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Abstract

Scale bias is the extent to which technical change increases the productivity of

large relative to small firms. This paper shows that scale bias is an important driver

of income and wealth inequality. To illustrate the mechanism, I develop a tractable

framework where people choose to work for wages or earn profits as entrepreneurs

and where entrepreneurs select from production technologies that differ in fixed and

marginal costs. Large-scale-biased technological change reduces entrepreneurship

and increases top income inequality primarily by concentrating business income,

whereas small-scale-biased change has the opposite effect. To empirically validate

the theory, I examine the causal impact of two general purpose technologies in man-

ufacturing that vary in scale bias, but are otherwise similar: steam power (large-scale-

biased) and electric power (small-scale-biased). To do so, I collect and digitize new

data from the United States and the Netherlands on firm sizes, technology adoption,

and inequality. Leveraging plausibly exogenous geographic variation in adoption, I

show that these two technologies had opposite effects. Steam power increased firm

sizes and inequality, while electric power decreased both. Finally, consistent with the

theory, I find that the rise in inequality after steam power adoption was primarily

driven by entrepreneurs at the top of the distribution.
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1 Introduction

Income and wealth inequality have significantly increased in many countries in recent
decades. Between 1980 and 2014, top-decile incomes in the United States rose more than
twice as fast as below-median incomes (Piketty et al., 2018).

Skill-biased technical change is a frequently cited explanation for increases in wage
inequality: if new technologies more strongly complement high-skilled labor—or tend to
automate low-skilled jobs—, this can increase wage inequality (Katz and Murphy, 1992;
Krusell et al., 2000; Violante, 2008; Acemoglu and Autor, 2011; Acemoglu and Restrepo,
2018, 2022). But wages are not the only source of income. For those at the top of the
distribution, business income is the dominant source of income and most of it accrues
to entrepreneurs who own large shares of their own business (e.g. Smith et al., 2019;
Kopczuk and Zwick, 2020).1

Can technical change affect the concentration of business income too and, if so, how
and when? This paper shows that it can and that the direction of the effect on in-
equality depends on the scale bias in technical change. I define scale bias as the extent
to which technical change differentially affects the productivity of large versus small
firms. Large-scale-biased technical change skews productive resources and profits to-
wards larger firms. Given that firm ownership tends to be very concentrated, this shift in
profits across firms implies a redistribution of income across households. In sum, I argue
that the firm size distribution constitutes a channel through which technical change can
affect income inequality.

To formalize the theory of scale-biased technical change and inequality, I develop a
simple and tractable model where households that are heterogeneous in entrepreneurial
productivity can choose to either work for wages or be an entrepreneur. Entrepreneurs
have access to a set of available technologies—defined by a marginal and a fixed cost—
and adopt the one that maximizes profits. I show that technical change is large-scale-
biased if it increases fixed costs relative to previously adopted technologies. If technical
change is large-scale-biased, it lowers entrepreneurship rates and leads to larger firms
on average. With fewer and larger firms, top entrepreneurs are capturing a larger share
of the profits which increases top income inequality. If technical change is small-scale-
biased, it has the opposite effects.

I then argue that the theory can be tested by comparing the causal effects of two of
the most important general purpose technologies in history: steam and electric power.
These two general purpose technologies provide an appropriate and useful comparison
because i) their adoption was sufficiently widespread and transformative to have a mean-

1See also Atkeson and Irie (2022) that argue for the importance of undiversified business ownership in
accounting for wealth mobility and changes in wealth inequality.
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ingful impact on the overall economy ii) their adoption is well documented iii) they were
similar in their capability and purpose, and iv) their cost structure induced technical
change with strongly different scale bias.2

Using steam power involved significantly higher fixed costs than electric power. The
annualized cost of a 50-horsepower (hp) steam engine—excluding fuel—was roughly
equivalent to the yearly wages of three to four unskilled workers. In contrast, an electric
motor driven by purchased electricity of the same capacity had operating costs nearly
200 times lower than those of a steam engine. Factories using electric motors had two
options: they could purchase electricity from a power plant or generate it on-site, typ-
ically using steam engines. Because self-generated power entailed high fixed costs but
lower marginal costs, firms faced a distinct fixed-to-marginal cost trade-off. As a result,
adoption patterns differed across firm sizes: large establishments were more likely to use
steam power (either to drive machines directly or to generate electricity), while electric
motors powered by purchased electricity were adopted more by smaller establishments.

This paper estimates the causal effects of steam and electric power in manufacturing
to verify the key theoretical predictions of the theory of scale-biased technical change
and inequality. First, I show that large-scale-biased technical change, i.e., steam power,
increases the average establishment size, while small-scale-biased technical change, i.e.,
electric power, decreases it. Second, I verify that the effects of technical change on the
ratio between average profits and average wages depend on the scale bias, which I show
to be an empirically relevant measure of inequality between entrepreneurs and workers.
Third, I show that large-scale-biased technical change increases income and wealth in-
equality, while small-scale-biased technical change has the opposite effect. Lastly, I find
evidence that these effects are driven by the concentration of business income at the top
of the distribution.

I overcame the challenge of measuring adoption of the two technologies, firm sizes,
and inequality in this historical period through an extensive effort to collect and digitize
various historical sources from the United States and the Netherlands. For the United
States, I draw on the Census of Manufactures that provides information such as the num-
ber of establishments, employment, value added, profits, wages, and power adoption
by state and industry. I digitize and compile these data for each decade from 1850 to
1950. To study the effects of scale-biased technical change on inequality directly, I collect
unique micro-data on wealth from the Netherlands over the course of industrialization.
To the best of my knowledge, it is the largest available dataset on the distribution of
wealth in any country during the period of steam and electric power adoption. I dig-

2Steam became the dominant power source in manufacturing in the second half of the 19th century.
Electric power began to be widely used around 1900, and in the first half of the 20th century purchased
electricity and steam power (used directly or to self-generate electricity) were each other’s substitute in
providing power to the factory.
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itized these handwritten data using state-of-the-art computer vision technologies. The
resulting dataset includes information on names, demographics, occupation, and, im-
portantly, wealth of each decedent between 1878 and 1927 in five major provinces in the
Netherlands, covering over a million decedents and more than half of the national popu-
lation. I complement this database with newly digitized data on manufacturing in Dutch
municipalities.

Using the US manufacturing data, I first confirm the theoretical prediction that steam
power caused establishment sizes to increase, while electric power decreased them. To
identify these effects, I use variation in natural resources across the United States that
affected the costs of using the technologies. Specifically, I use access to historical coal re-
sources and hydropower potential as instruments for steam power and electricity adop-
tion, respectively.3 I find that high-coal access states experienced a growth in establish-
ment sizes relative to 1850, when steam started to be adopted in US manufacturing. In
contrast, after the introduction of electric power around 1900, high-hydropower states
experienced a decrease in establishment sizes (while no effect is estimated before 1900).
Using this variation, I estimate the effect of a 1% increase in steam capacity in horse-
power to be a 1.1% increase in firm size. For electric power, I estimate this elasticity to be
-0.4. In support of the exclusion restriction, I find that the effects of hydropower and coal
resources were limited to industries that used power.

I then show that large-scale-biased technological change increases the ratio of average
profits to average wages, whereas small-scale-biased change has the opposite effect. The
effects are quantitatively similar to those on the firm size, as predicted by the theory. To
estimate these effects on the profit-wage ratio, I use the same methodology as used for
the effects on firm sizes.4 These effects are predicted by the theory because high fixed cost
technologies push up the average firm size (and thus profits) relative to the wage. These
effects capture both a selection effect, that the remaining entrepreneurs are on average
more productive, and a causal effect, that their profits increase more than the average
wage.

I then show that the profit distribution among firms matters for inequality among
households. Hypothetically, if each individual holds a fully diversified portfolio of firms,
the profit distribution is irrelevant for inequality between different households. In con-
trast, if each entrepreneur fully owns a single firm, the profit-wage ratio is a perfect mea-
sure of such inequality. More generally, how much the profit distribution matters for in-
equality depends on the concentration of firm ownership. In practice, entrepreneurs hold

3Various other authors have used hydropower potential as an instrument for electricity adoption (e.g.
Leknes and Modalsli, 2020; Gaggl et al., 2021). Data to construct the instruments are from the Coal Re-
sources Data System (coal resources) and Young (1964) (hydropower potential).

4I compute profits in the Census of Manufactures using data on output, raw material costs, labor costs,
capital stock, and other expenses.
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significant shares of their own businesses (Hall and Woodward, 2010). In non-publicly
traded firms, concentration tends to be near perfect (e.g., Smith et al., 2019). But even
ownership of large publicly traded firms is concentrated. For instance, the founding
family of Walmart, the largest company in the world by revenue, owns 45 percent of its
shares.5 Anderson and Reeb (2003) found that the average Fortune 500 firms was 18 per-
cent owned by its founding family.6 As a result of such ownership concentration, I find
significantly larger wealth inequality between entrepreneurs and workers active in state-
industry pairs where profit-wage ratios are higher, with correlations around 0.7. Since
those at the top of the wealth distribution tend to be entrepreneurs, profit-wage ratios
are similarly predictive of top wealth inequality.

The estimated effects of scale-biased technical change on profit-wage ratios, coupled
with the strong correlation between profit-wage ratios and inequality, already offer sug-
gestive evidence that scale-biased technical change affects inequality in the way pre-
dicted by the theory. To test the two technologies’ effects on inequality directly, I turn
to the newly compiled database on income and wealth during Dutch industrialization.

Using the Dutch dataset, I provide direct evidence that the effect of technical change
on inequality depends on its scale bias. I find that, on the level of the municipality, steam
power increased wealth inequality, while electric power decreased it. The effects on in-
equality are primarily driven by the very top of the distribution, while the rest of the
distribution was not much affected. For identification in this context, I exploit a munici-
pality’s exposure to the technologies based on their industrial composition in 1816, long
before industrialization.

Lastly, I show that scale-biased technical change affects top wealth inequality through
entrepreneurs who adopt the technology. To test this, I focus on Enschede, a major
industrializing city in the Netherlands, where the pre-existing textile industry made
steam power especially attractive. Wealth inequality rose sharply, driven by textile en-
trepreneurs. Excluding the entrepreneurs and their spouses, I find no significant increase
in inequality, indicating that entrepreneurial income—not wages—was the key driver.
This supports the theory of scale-biased technical change: large-scale-biased technical
change in textile manufacturing increased firm concentration, which, in turn, concen-
trated business income in the hands of a few entrepreneurs.

Related literature. First, this paper contributes to our understanding of the effect of
technical change on income and wealth inequality. Scale-biased technical change offers a
view on the distributional effects of technology that complements existing theories, such
as skill bias (e.g., Katz and Murphy, 1992; Acemoglu and Autor, 2011). The case of elec-

5As estimated by Forbes as of January 2025.
6Similarly, Goldsmith et al. (1940) reports that in 1940, just 13 families held over 8 percent of equity

in the largest 200 corporations, noting that each family “has shown a strong tendency to keep its holding
concentrated in the enterprise in which the family fortune originated”.
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tricity illustrates the distinct implications of theories of skill- and scale-biased technical
change. Goldin and Katz (1998) argue that electric motor adoption increased demand for
skilled workers by facilitating a shift to continuous process and batch methods, primar-
ily through more efficient “unit drive” systems.7 For scale-biased technical change, a key
feature of electricity is that it allows to “separate the place of generation from the place
of use” (Helpman, 1998), reducing the fixed costs of power usage. To distinguish the role
of scale from skill, I only use variation in the relative cost of using self-generated power
(high fixed cost) and purchased electricity (low fixed cost), not in the relative cost of us-
ing electric motors per se. Importantly, the argument that electric motors favored skilled
workers applies regardless of whether the electricity is purchased or self-generated.

The theory of scale-biased technical change also relates to the Schumpeterian model
of top income inequality in (Jones and Kim, 2018). In such models, the growth rate of in-
cumbent entrepreneurs’ productivity is a key parameter in shaping top income inequal-
ity. This paper contributes to this literature in two ways. First, by incorporating the
cost structure of technologies, it provides an endogenous technological driver for shifts
in the returns to entrepreneurial talent or effort. Second, by pairing the theory with the
historical comparison of steam and electric power, I provide empirical evidence that tech-
nological change that is biased to large-scale production can affect inequality through its
effect on the returns to entrepreneurial talent.

I further contribute causal evidence to a large literature that relates increased firm con-
centration to a move toward high fixed cost technologies (e.g. Poschke, 2018; Hsieh and
Rossi-Hansberg, 2023; Kwon et al., 2024). Intangible inputs such as software have been
posited as an example of this (Brynjolfsson et al., 2008; Lashkari et al., 2024; De Ridder,
2024). It has been hard to establish credible causal evidence of the effect of technical
change on firm sizes. Furthermore, because most modern technologies vary on many
dimensions other than their cost structure, it is difficult to isolate the role of specific tech-
nological characteristics. This paper studies two technologies that were similar except
for their cost structure, allowing to single out the role of fixed costs in shaping the firm
size distribution.

This paper also relates to a large literature on the economic history of the adoption
of steam and electric power. It specifically relates to a literature on the differential costs
and adoption of the two technologies in manufacturing (for steam power, see e.g., Atack
(1979); Hunter (1979, 1985); Atack et al. (2008); for electric power, see e.g., Du Boff (1967,
1979)). Hornbeck et al. (2024) show that the adoption of steam was hampered by lock-
in effects of water-powered incumbents. This paper also relates to the literature on the
economic effects of the two technologies (for steam power, see e.g., Kim (2005); Atack

7Unit drive refers to a power distribution method where each machine is powered by its own electric
motor.

5



et al. (2019); for electric power, see e.g., Fiszbein et al. (2020)).8 To contribute to the
above literature, this paper studies the causal effect of steam power and electricity in
manufacturing on establishment sizes and inequality through the lens of the theory of
scale-biased technical change.

Lastly, this paper speaks to the patterns of inequality during industrialization. Kuznets
(1955) hypothesized that inequality rises in the early stage of industrialization and later
decreases, because of a shift away from the agricultural sector to the more productive,
but potentially more unequal, manufacturing sector. Interestingly, he explicitly related
inequality to scale: “inequalities [in manufacturing] might be assumed to be far wider
than those for the agricultural population which was organized in relatively small in-
dividual enterprises.” In this paper, I provide a theoretical foundation and empirical
evidence for that argument.

2 Theoretical Framework

In this section, I introduce an occupational choice model that allows to study the effect of
scale-biased technical change on entrepreneurship, firm concentration, and inequality in
a unified general equilibrium framework. I provide testable implications of the theory to
study in the empirical application.

2.1 Model

There is a continuum of households with unit measure that differ in their entrepreneurial
productivity ψ. I assume that ψ has a probability density function f (·) with semi-infinite
support on R+, i.e., {ψ | f (ψ) > 0} = [ψm, ∞) for some ψm ≥ 0.9

In a first stage, before observing their entrepreneurial productivity ψ, each household
decides whether to be a worker or to be an entrepreneur (Lucas, 1978). A household
knows that by choosing entrepreneurship, it is foregoing the wage w.

Once this opportunity cost is sunk, in the second stage, entrepreneurs observe their
productivity ψ and choose whether to enter business or not.

An entrant chooses, in a third stage, from an exogenous set of available production
technologies T ≡ {t1, .., tJ}. Each technology tj ∈ T is a tuple {αj, κj} where αj is a
parameter that affects marginal labor cost and κj > 0 is its fixed cost in terms of the final
good.10 I assume that T does not contain trivially dominated technologies. That is, if

8Further, it contributes to a literature on the effects of electrification more generally (e.g., Vidart, 2024).
9To derive a closed-form solution of the equilibrium, I will later assume that ψ ∼ Pareto(ψm, ξ).

10This can be seen as a generalization of the binary technology choice in (Yeaple, 2005; Bustos, 2011),
who are concerned with the connection between trade and technology adoption.
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tj, tk ∈ T and αj < αk, then κj > κk.11 Technologies are arranged in order of increasing
fixed costs (κ1 < .. < κJ).

Finally, in stage four, after adopting technology j, entrepreneurs maximize profits
given their productivity ψ, yielding πj(ψ).

Figure 1 visualizes the decision process and pay-offs. I characterize optimal behavior
and derive equilibrium conditions by backward induction.

FIGURE 1: Pay-off tree

Stage 1: Occupational choice

Productivity draw

Stage 2: Entry decision

Stage 3: Technology adoption

Stage 4: Profit maximization

Entrepreneur

w

Worker

ψ

Nature

0

Exit Enter

t1
t2 ..... tJ−1

tJ

π1(ψ) π2(ψ)
....

πJ−1(ψ) πJ(ψ)

Stage 4: Profit maximization. Each household’s utility is linearly increasing in the con-
sumption of an aggregate good. The aggregate good is produced using a continuum of
differentiated goods indexed by ω with constant elasticity of substitution σ (Dixit and
Stiglitz, 1977; Melitz, 2003).

Y =

[∫
ω∈Ω

y(ω)
σ−1

σ dω

] σ
σ−1

. (1)

The demand for good ω is thus y(ω) = Y
(

p(ω)
P

)−σ
where p(ω) is the price of good ω

and P1−σ ≡
[∫

ω∈Ω p(ω)1−σdω
]
. Hereafter, I use the normalization that P = 1.

11This assumption does not affect any equilibrium outcome as such trivially dominated technologies
would not be adopted.
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Each entrepreneur produces one of these differentiated goods. Given technology tj

and entrepreneurial productivity ψ, their production function is

yj(ψ) =
ψl
αj

(2)

where l is labor and αj is the marginal labor cost for technology tj. The total cost to
produce y given tj and ψ is Cj(y | ψ) =

αjw
ψ y + κj where κj is the fixed cost in terms of the

aggregate good.

Profit maximization conditional on technology and productivity then yields the pric-
ing rule

pj(ψ) =
αjw
ρψ

(3)

where ρ ≡ σ−1
σ . This pricing rule is standard (e.g., Melitz, 2003, eq. (3)), except that the

production technology may vary across producers. In equilibrium, this yields (condi-
tional) profits πj(ψ) equal to

πj(ψ) =
Y
σ

(
ρψ

αjw

)σ−1

− κj. (4)

Stage 3: Technology adoption. An entrepreneur that chooses to produce can use any of
the J available technologies in the set T. She therefore adopts the technology j that yields
largest profits, so the profits of an entrepreneur with productivity ψ are:

π(ψ) = max
j∈{1,2,..,J}

{πj(ψ)}. (5)

An important implication of this profit function is that more productive entrepreneurs
choose higher fixed costs technologies. To see this, note that for an entrepreneur with
productivity ψ, the difference in profits when using technologies tj and tk is:

∆πjk(ψ) ≡ πj(ψ)− πk(ψ) =
Y
σ

(
ρψ

w

)σ−1 (
α1−σ

j − α1−σ
k

)
− (κj − κk). (6)

Recall that since j > k, κj > κk and αj < αk. It then follows from the expression that
∆πjk(ψ) is strictly increasing in ψ. That is, the more productive an entrepreneur is, the
larger their profits under technology j (higher fixed, lower marginal cost) relative to tech-
nology k (lower fixed, higher marginal cost). A corollary of this result is that prices are
strictly decreasing in ψ (see equation (3)), such that entrepreneurs with higher productiv-
ity face more demand and, hence, produce more.

Stage 2: Entry decision. After observing their entrepreneurial productivity ψ, each en-
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trepreneur decides whether or not to exit or enter. Since the opportunity cost is zero (as
the opportunity cost of not working is already sunk), they decide to enter if and only if
π(ψ) ≥ 0.

There is a unique ψ̄ > 0 such that an entrepreneur enters if and only if ψ ≥ ψ̄. To
see this, note that equation (4) implies that πj(ψ) is strictly increasing in ψ for each j ∈
{1, 2, .., J}. Therefore, π(ψ) is the maximum of J strictly increasing functions and is thus
also strictly increasing. Finally, π(0) = −κ1 < 0 and π(ψ) → ∞ as ψ → ∞. It thus
follows that there is a unique ψ̄ implicitly defined by

π(ψ̄) = 0. (7)

To solve for this threshold, note that profits under each technology are strictly increasing
in πj(ψ). Therefore, each technology j has itself a zero profit cut-off ψ̄j above which
profits are positive. From equation (4), this threshold is defined by

ψ̄j = αjκ
1

σ−1
j

( σ

Y

) 1
σ−1 w

ρ
.

Since an entrepreneur enters if and only if at least one technology yields positive prof-
its, the entry decision is governed by the technology for which the entry threshold ψ̄j is
lowest. Combining equations (4), (5), (7) gives a solution for ψ̄ > 0:

ψ̄ = min
j∈1,2,..,J

ψ̄j = min
j∈1,2,..,J

{
αjκ

1
σ−1
j

}( σ

Y

) 1
σ−1 w

ρ
. (8)

Figure 2 shows the profit function π(ψ) and the optimal decision in Stage 2 and 3. It
illustrates that the entry cut-off ψ̄ is the productivity level for which the technology with
the lowest entry threshold gives positive profits.

Stage 1: Occupational choice. Free entry into entrepreneurship (and risk-neutrality)
implies that the expected profits of entering must equal the wage. That is,∫ ∞

ψ̄
π(ψ)dF(ψ) = w. (9)

Defining average profits of producing entrepreneurs as π̄ ≡ 1
1−F(ψ̄)

∫ ∞
ψ̄ π(ψ)dF(ψ), equa-

tion (9) can be alternatively written as (1 − F(ψ̄)) π̄ = w: the probability of entry times
the average profits conditional on entry should equal the wage.
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FIGURE 2: Profit π(ψ) and productivity ψ in case of three adopted technologies

π1(ψ)

π2(ψ)

π3(ψ)

Exit Enter

t1 t2 t3

ψσ−1

π(ψ)

Notes: The braces indicate the optimal action in Stage 2 and 3 given productivity ψ. The elasticity of
substitution σ is larger than one so that ψσ−1 is increasing in ψ.

2.2 Which technologies are adopted?

Answering this question requires defining some notation. First, it follows from optimal
behaviour in stages 2 and 3 that a technology is adopted in equilibrium if there is a set of
entrepreneurs that both i) decides to enter and ii) finds it profit-maximizing to produce
with that technology. I define the adopting set for technology j as the set of productivity
levels for which both conditions are satisfied:

Ψj ≡ {ψ | π(ψ) ≥ 0}︸ ︷︷ ︸
Enter

∩
{

ψ | πj(ψ) = maxk∈{1,...,J}πk(ψ)
}

︸ ︷︷ ︸
Use technology j

(10)

A technology j is adopted if the probability measure of the adopting set Ψj is strictly
positive. Let T∗ ⊆ T be the set of adopted technologies, so that

tj ∈ T∗ ⇐⇒ Pr
(
ψ ∈ Ψj

)
> 0 for any j = 1, 2, ..J.

Proposition 1 shows which technologies are adopted in equilibrium.

Proposition 1 (Adopted technologies). Let t∗j = {α∗j , κ∗j } be the technology in T∗ with the
jth-lowest fixed cost κ∗j and let J∗ ≡ |T∗|. Then, the set of technologies adopted in equilibrium,

T∗ =
{

t∗1 , .., t∗J∗
}

, is such that

(a) the adopted technology with the highest marginal (lowest fixed) cost t∗1 = (α∗1 , κ∗1) is such
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that

α∗1(κ
∗
1)

1
σ−1 = min

j∈1,2,..,J

{
αjκ

1
σ−1
j

}
and;

α∗1 = min
j∈1,2,..,J

{
αj | αjκ

1
σ−1
j = min

l∈1,2,..,J

{
αlκ

1
σ−1
l

}}

(b) the adopted technology with the lowest marginal (highest fixed) cost t∗J∗ = (α∗J∗ , κ∗J∗) is such
that

α∗J∗ = min
j∈1,2,..,J

{
αj
}

and;

κ∗J∗ = min
j∈1,2,..,J

{
κj | αj = min

l∈1,2,..,J
{αl}

}

(c) any technology with fixed cost κ∗1 < κj < κ∗J∗ is adopted if and only if for any k ∈ {1, .., j −
1} and l ∈ {j + 1, .., J}

α1−σ
l − α1−σ

j

α1−σ
j − α1−σ

k

<
κl − κj

κj − κk
.

Proof of Proposition 1. See Appendix C.

Proposition 1(a) indicates which technology is the adopted technology with highest
marginal cost (and thus lowest fixed cost). Since the profit gain of a marginal cost reduc-
tion is increasing in productivity ψ, this is the technology that is adopted by the marginal
entrepreneur (ψ = ψ̄). Also, the marginal entrepreneur must use the technology j with
the lowest entry threshold ψ̄j (in Figure 2, the technology with the leftmost intersection
with the zero-profit axis). The first condition in Proposition 1(a) then follows from equa-
tion (8). The second condition in Proposition 1(a) states that—in knife-edge cases where
there is more than one technology that minimizes the entry threshold—only the technol-
ogy with the lowest marginal cost among those that minimize the entry threshold are
adopted because all but the marginal entrepreneur would strictly prefer that technology.

Proposition 1(b) shows that the technology with the lowest marginal cost is always
adopted, regardless of its fixed cost. Since the gains from lowering marginal cost are
strictly increasing in productivity, the gains from lowering marginal cost are unbounded.
The result then follows from the unbounded support of the productivity distribution.
No matter how high the fixed cost, there is always a strictly positive measure of en-
trepreneurs willing to incur it to reduce marginal cost. Of course, if there are multiple
technologies that minimize marginal cost, only the technology with lowest fixed cost
among them is adopted. It follows from combining Propositions 1(a) and 1(b) that only
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one technology is adopted in equilibrium if and only if the technology in T with the
lowest marginal cost also comes with the lowest entry threshold.

Lastly, Proposition 1(c) covers all remaining adopted technologies, if any. Intuitively,
for a technology to be adopted by an entrepreneur, their productivity must be high enough
to make using that technology more profitable than using any other technology with
higher marginal cost (and lower fixed cost), but also low enough to make the technology
more profitable than adopting any other technology with lower marginal cost (and higher
fixed cost). Proposition 1(c) sets out the conditions under which the set of productivities
that satisfy these conditions has a strictly positive probability measure. To illustrate the
condition, consider Figure 2: there is an intermediate set of productivity levels, for which
technology t2 yields higher profits than both t1 and t3. For such a set of productivity
levels to exist, the lower bound on productivity above which t2 yields higher profits than
t1 must be smaller than the upper bound below which it yields higher profits than t3.

2.3 Equilibrium

Definition (Competitive equilibrium). Given an exogenous technology set T = {t1, .., tJ},
a competitive equilibrium consists of a price w, profits {π(ψ)}, output Y, productivity
threshold ψ̄, adopting sets {Ψj}J

j=1, and a share of entrants L such that

– profits π(ψ) are as defined in (4) and (5);

– the adopting set of technology j, Ψj, is as defined in (10);

– the free entry condition in (9) holds;

– the labor and goods markets clear, so that

L = (1 − L)Y
( ρ

w

)σ J

∑
j=1

α1−σ
j

∫
ψ∈Ψj

ψσ−1dF(ψ), (11)

Y = Lw + (1 − L)

(
J

∑
j=1

κj

∫
ψ∈Ψj

dF(ψ) +
J

∑
j=1

∫
ψ∈Ψj

π(ψ)dF(ψ)

)
; (12)

– consumption equals aggregate good production net of fixed cost

C = Y − (1 − L)

(
J

∑
j=1

κj

∫
ψ∈Ψj

dF(ψ)

)
;
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– the pricing by entrepreneurs is consistent with a price index equal to 1, so that

1 = (1 − L)
(

w
ρ

)1−σ J

∑
j=1

α1−σ
j

∫
ψ∈Ψj

ψσ−1dF(ψ). (13)

Having defined the equilibrium in general, in order to get more concrete results, form
now on I assume that the distribution of productivity ψ is Pareto. With this assumption,
the model has closed-form analytical solutions reported in Appendix C.

Proposition 2 (Closed-form equilibrium). Suppose that the distribution of productivity ψ is
Pareto with shape parameter ξ and a minimum productivity level of ψm > 0 such that ξ > 1 and
ξ > σ − 1. Then, the closed-form solutions to the competitive equilibrium for L, ψ̄, Y, C, w, and
π̄ are given by equations (28), (29), (30), (31), (32), and (33) in Appendix C.

Proof of Proposition 2. See Appendix C.

Proposition 1 and 2 together fully characterize the equilibrium in closed form. In the
next subsection, I use these results to study the effect of scale-biased technical change on
entrepreneurship, firm concentration, wages, output, profits, and inequality.

2.4 Scale bias

To formalize scale-biased technical change, I first define the total factor productivity of a
firm as the idiosyncratic productivity of the entrepreneur ψ divided by the marginal cost
parameter of the technology in T that it adopts:

TFP (ψ | T) =


ψ

α(ψ|T) if ψ ≥ ψ̄ (T)

0 otherwise

where ψ̄ (T) and α(ψ | T) are the entry threshold (derived in closed-form in Proposition
2) and the marginal cost parameter of the optimally adopted technology given technol-
ogy set T. Total factor productivity is zero for entrepreneurs that do not produce, so that
it reflects changes in the extensive margin (in and out of production).

I define technical change as an addition of a new technology, say tnew, to the technology
set Told such that Tnew = Told ∪ {tnew}. From there, I define scale-biased technical change
formally.

Definition (Scale-biased technical change). Technical change is large-scale-biased if and
only if there exists some k > min {ψ̄(Tnew), ψ̄(Told)} such that it increases TFP for ψ > k
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and does not increase it for ψ < k:

TFP (ψ | Tnew) > TFP (ψ | Told) ∀ψ > k and;

TFP (ψ | Tnew) ≤ TFP (ψ | Told) ∀ψ ∈ (min {ψ̄(Tnew), ψ̄(Told)} , k) .
(14)

It is small-scale-biased if and only if

TFP (ψ | Tnew) ≤ TFP (ψ | Told) ∀ψ > k and;

TFP (ψ | Tnew) > TFP (ψ | Told) ∀ψ ∈ (min {ψ̄(Tnew), ψ̄(Told)} , k) .
(15)

In other words, technical change is large-scale-biased if it increases the productivity of
firms above some level of entrepreneurial productivity, while it does not increase the pro-
ductivity of other firms. I do not consider cut-off levels k below min {ψ̄(Tnew), ψ̄(Told)}
because for those levels of productivity people do not choose to be entrepreneurs under
either technology set.

The definition is similar to that of skill-biased technical change as increasing skilled
workers’ productivity relative to unskilled labor (Katz and Murphy, 1992; Violante, 2008).
Krusell et al. (2000) provide a micro-foundation for skill-biased technical change by con-
sidering that the relative productivity changes could be caused by capital-skill comple-
mentary. In the same vein, I provide an explicit mechanism for relative productivity
increases of large firms in terms of the available technologies. That is, I derive the condi-
tions on the technological parameters under which technical change is large-scale-biased
in equilibrium. Proposition 3 lays out these conditions.

Proposition 3 (Scale-biased technical change). Suppose that the assumptions in Proposition
2 (Pareto distribution) hold, that σ > 2, and that T∗

new = T∗
old ∪ {tnew} (the new technology is

adopted alongside the previously adopted technologies). Then,

(a) the technical change is large-scale-biased if and only if

κnew > max
{αj,κj}∈T∗

old

κj;

(b) and the technical change is small-scale-biased if and only if

κnew < min
{αj,κj}∈T∗

old

κj.

Proof. See Appendix C.

Proposition 3 shows that the addition of a technology constitutes large-scale-biased
technical change if and only if the new technology comes with highest fixed cost. Con-
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versely, it is small-scale-biased if the new technology has lowest fixed cost. Since no tech-
nology can strictly dominate another adopted technology, the result implies that technical
change is large-scale-biased if and only if the new technology has lowest marginal cost.

The intuition behind the “if” is that a technology on the extreme end of the technol-
ogy set would be adopted by the most productive or least productive entrepreneurs.
Also, under the assumptions in Proposition 3, if a new technology is adopted, it reduces
profits when using the other technologies. Therefore, entrepreneurs that do not adopt
the new technology do not reduce marginal cost through a change to a third technol-
ogy. If anything, some may find it optimal to use a technology with higher marginal
and lower fixed costs than before in response to other entrepreneurs using the new tech-
nology. Thus, if a new technology has largest fixed cost, it increases the productivity of
the top entrepreneurs, but not the rest. Vice versa, if it comes with lowest fixed cost, it
increases the relative productivity of small entrepreneurs.

If a technology is adopted that has neither the highest nor the lowest fixed cost, it will
be used by a set of intermediate entrepreneurs. This means that both the largest and the
smallest firms do not adopt this technology. Hence, by the same reasoning as above, this
type of technical change does not increase the productivity of either small or large firms
and is thus neither large- nor small-scale-biased.

The assumption that σ > 2 is supported by empirical evidence. First, it is consistent
with estimates of σ around 6 for US manufacturing (Bernard et al., 2003) and with the
calibration of σ = 4 by Melitz and Redding (2015). Second, σ ≤ 2 implies a labor share
of a half or lower, while the labor share has been consistently larger than a half in the US
and other countries. Third, if σ ≤ 2, the implied mark-up is larger than 2, while empirical
estimates of mark-ups are considerably below 2 (e.g., De Loecker et al., 2020).

Proposition 3 covers all cases where the new technology is adopted without making
existing technologies obsolete. Proposition 3A in Appendix C extends the analysis to
cases where the new technology renders some previously adopted technologies obsolete.

2.5 Testable implications of the theory

Using Propositions 2 and 3, I generate three main predictions of the theory. First, large-
scale-biased technical change increases average firm sizes, while small-scale-biased tech-
nical change decreases them. Second, large-scale-biased technical change increases in-
come inequality between workers and entrepreneurs. Third, large-scale-biased technical
change increases top income inequality.

Proposition 4 (Theoretical implications of scale-biased technical change). Suppose the as-
sumptions in Proposition 3 hold. Then, large-scale-biased technical change

15



(a) increases the average firm size as measured by employment;

(b) increases income inequality between active entrepreneurs and workers;

(c) increases the income share of the top k% income earners for any k below some k̄ ∈ (0, 100).

Small-scale-biased technical change has the opposite effects.

Proof of Proposition 4. See Appendix C.

The remainder of the paper is devoted to testing the theoretical predictions above. I
will use the case of steam and electric power. In the next section, I show that steam power
adoption was large-scale-biased technical change, while the adoption of electric power
constituted small-scale-biased technical change.

3 The Scale Bias in Steam and Electric Power

To test the theory of scale-biased technological change, I compare the effects of the adop-
tion of steam power and electricity in manufacturing. This section establishes why these
two technologies provide a suitable comparison for evaluating the theory. Specifically,
I argue that while both served the same fundamental function—powering factories—
they differed crucially in scale bias: steam power adoption represented large-scale-biased
technological change, while electricity adoption was small-scale-biased.

Figure 3 illustrates the history of power use in US manufacturing. A few main pat-
terns jump out. First, the waterwheel was slowly replaced by steam power in the second
half of the 19th century (Hornbeck et al., 2024). Second, electricity was adopted from
around 1900. Third, steam power and electricity combined accounted for most of power
from around 1870 onward. Fourth, the superiority of electric motors meant that internal
combustion engines were never adopted on a large scale (Du Boff, 1967). Fifth, electric
motors driven by purchased electricity started to become dominant around the 1930s,
but steam engines remained an important source of primary power until at least 1939.
Figure A.1 shows the same patterns for the Netherlands.12

12A distinction can be made between the primary source of power (from the perspective of the plant)
and the system to deliver that power. Many electric motors in manufacturing were not driven by purchased
electricity, but by electricity generated in the plant. Such “secondary movers” are excluded from Figure
3 to avoid double counting of capacity. The share of non-electric primary power, such as steam engines,
that served to generate electricity for intra-plant use grew strongly over time: from 14.8% percent in 1909
to 65.8% in 1939 (Du Boff, 1979, Table 15). Hence, electricity as a system of power delivery was more
dominant than suggested by considering only the primary source of power. In this paper I focus on the
primary source of power as the key distinction between “steam engines” and “electric motors”.
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FIGURE 3: Capacity of primary power by type in horsepower per 100 employees in
manufacturing in the United States
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Notes: Electricity (purchased) refers to electric motors driven by purchased electricity, only. Electric motors
driven by energy generated in the plant are covered under steam engines. Sources: (Atack, 1979, Table 1)
for the number of steam engines and waterwheels in 1850 and 1860; (Atack et al., 1980, p. 285) for their
average size (21 and 15 hp, respectively); Census of Manufactures 1860 for employment in 1850 and 1860;
Census of Manufactures 1939, Power equipment and energy consumption, Table 3 for all years after 1860.

Contemporaneous studies show that steam power came with much higher fixed costs
of purchase, renewal, and operation than using electric motors driven by purchased elec-
tricity. The price of a steam engine and boiler of average capacity was around $5331 in
1874, more than 13 times the yearly wage of an unskilled manufacturing worker (Emery,
1883; Abbott, 1905).13 On top of that, it required an engineer and a firemen, supplies, oil,
and repairs. In total, I estimate the annualized cost of purchase, renewal, maintenance,
and operation of a 50 horsepower steam engine to be around $1378, about 3 to 4 times the
yearly unskilled wage. In other words, for the cost of operating an average-sized steam
engine excluding fuel, one could hire around 3 to 4 unskilled workers. In comparison,
the equivalent annualized fixed costs of an electric motor of that size were negligible: the
fixed cost amounted to only 2 percent of the yearly wage of an unskilled worker (Bolton,
1926). In Appendix E, I provide more details on computations and sources.

Larger steam engines are also considerably more efficient in converting energy into
motion than small ones (Atack, 1979; Devine, 1983), while electric motors’ efficiency does
not vary nearly as much with size. In the words of the engineer Bell (1891): “With the
electric motor the case is very, very different [from steam engines]; an eight horse-power
motor may be as completely worked out in detail as one of a hundred times its power,
and may be only slightly less efficient.” Figure A.2 illustrates the efficiency of steam
engines and electric motors for different sizes (horse-power capacity) relative to a 100
hp equivalent based on estimates by Emery (1883) and Bolton (1926). A steam engine

13The average steam engine in the United States in 1889 had a capacity of 50.1 horsepower (Du Boff,
1979). The daily wage of an unskilled worker was $1.29 Abbott (1905), which I multiplied by 309 days as
in (Emery, 1883).
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of 10 hp required more than twice as much coal per horse-power of energy output than
a 100 hp steam engine. Coal-efficiency was an important consideration given that coal
accounted for between a half and two-thirds of the total operating costs for the larger
engines.

The marginal and fixed costs of steam engines and electric motors can be combined
to estimate an average cost curve by rated capacity for the electric motor and the steam
engine. Figure 4 shows the results.14 Clearly, steam power was much more cost-efficient
on a large scale. For electric motors, scale was close to irrelevant as almost all costs were
marginal, coming from the purchase of electricity, and the efficiency loss of small motors
was minor.

FIGURE 4: Average cost per horsepower per year of steam engines and electric motors of
different capacities relative to its 100-horse power equivalent
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Notes: Author’s computation based on contemporaneous price and efficiency data. Sources: (Emery, 1883)
for steam engines and coal; (Bolton, 1926; Hannah, 1979) for electric motors and electricity. See Appendix
E for further details.

There were also some other, more indirect, reasons that steam power skewed to large
establishments. First, a steam engine occupied a large amount of space. Second, steam
engines had to be run at full capacity even if only small doses of power were required,
a feature likely to be specifically uneconomical for small establishments where power
needs vary more (Du Boff, 1967).

The adoption rates by plant size reflect the considerations above. Figure 5A shows that
large plants were much more likely to adopt steam engines, as documented before by

14I have assumed an interest rate of 5 percent, depreciation rates as estimated by Emery (1883); Bolton
(1926) and a price of electricity as reported by Hannah (1979) and of coal as Emery (1883). In Appendix
E, I explain the assumptions and computations underlying Figure 4 in further detail. Consistent with my
estimates based on Emery (1883), (Kapp, 1894, p. 234) reports that the cost per horsepower hour of a
“small” steam engine was about four times the cost of that of a “large” engine.
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Atack et al. (2008). In contrast, Figure 5B indicates that electric motors were almost uni-
formly adopted across the establishment size distribution. However, small firms tended
to rely solely on purchased electricity while large firms were more likely to use self-
generated electricity. This further confirms that, for the purpose of studying scale bias,
the relevant distinction is the primary source of power, not the system of delivery.

FIGURE 5: Adoption rates by establishment size
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(B) Electric motors (1929)
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Notes: This figure indicates the share of establishments using steam engines in 1880 (panel A) and electric
motors driven only by purchased electricity vs. generated electricity in 1929 (panel B) by establishment size
as computed from micro-samples of the Census of Manufactures. Sources: for 1880, the national random
sample of the Census of Manufactures (Atack and Bateman, 1999); for 1929, the Census of Manufactures for
selected industries (Vickers and Ziebarth, 2018). I left out the concrete industry as data on electric motors
driven by generated electricity is not available for that industry.

4 Data Construction

This paper uses newly collected and digitized data from the United States and the Nether-
lands. In this section, I discuss the sources and construction of the datasets for both
countries. A key contribution is the collection and digitization of microdata on wealth
of hundreds of thousnds of people in the Netherlands during the period of steam and
electric power adoption. Additionally, I digitized and compiled manufacturing data for
the same period for both the United States and the Netherlands.

4.1 Netherlands

4.1.1 Microdata on Wealth (1879-1927)

The data on wealth derive from the inheritance tax administration. The original source
files are printed estate tax declarations that were filled in by hand indicating a decedent’s
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name, place of residence and death, date of death, and importantly, the value of their
estate. The documents are referred to in Dutch as “memories van successie”.

I assemble a large micro-database that contains the names, residence, and wealth at
death for all individuals who died in selected Dutch provinces between 1879 and 1927.
The provinces cover slightly over half of the national population. I included all areas for
which the universe of the source files were available online as scanned images, namely
the provinces Noord-Holland, Noord-Brabant, Gelderland, Overijssel, and Zeeland.15 In
1900, these five provinces contained 52 percent of the population (Ekamper et al., 2003,
p. 29) and include the capital city, Amsterdam.

The inheritance tax was introduced in 1818. All the tax returns up to 1927 are pub-
licly available in regional archives in the Netherlands. Before 1878, the inheritances were
only subject to tax if not all recipients were descendants in the direct line. After 1878,
all inheritances above ƒ1000 (a thousand Dutch guilders) were taxed, and some inheri-
tances between ƒ300 and 1000, depending on the period and the relationship between the
decedent and the heir. These thresholds meant that a considerably larger share of dece-
dents were assessed for the tax than in other countries (see also Toussaint et al., 2022;
Gelderblom et al., 2023), so that the data cover a relatively broad range of the wealth
distribution: in the median region and period, I observe the wealth of about 20 percent
of adult decedents. For further detail on the tax and its administration, I refer to De Vicq
and Peeters (2020).

Main digitization procedure. Detection and recognition of handwritten data, especially
of non-integer numbers, is a problem at the frontier of deep learning research (e.g., Kuse-
togullari et al., 2021). Deep learning is increasingly used in economics research for doc-
ument scan digitization Dell et al. (2023); Dell (2025). However, handwritten text and
numbers, especially from historical documents, is particularly challenging. I develop a
framework that ensures accuracy even in the presence of large variation in image quality
and handwriting using deep learning object detection and classification methods. While
the framework is specifically designed for accuracy in extracting data from the source
files of interest, I believe that the algorithm itself may nonetheless be useful for other
researchers facing similar problems.

I first trained a state-of-the-art object detection algorithm called YOLOv5 to filter out
and crop relevant parts of millions of scans of inheritance tax files. Thankfully, the form
used in the inheritance tax was consistent nationally and over time between 1879 and
1927. I trained the object detection algorithm to recognize the location of the form that
contains the relevant information. Figures D.1, D.2, and D.3 show examples of the type of

15The archival sources are: Noord Hollands Archief, record group 178 (for Noord-Holland); Brabants
Historisch Informatie Centrum, various record groups (for Noord-Brabant); Gelders Archief, various
record groups (for Gelderland); Collectie Overijssel, record group 136.4 (for Overijssel); Zeeuws Archief,
record group 398 (for Zeeland).
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documents in the inheritance tax files. The document in Figure D.1 is an example of a part
of the form that contains the name and demographic information of the decedent. Figure
D.2 shows the page that contained information on the decedent’s assets, liabilities, and
net worth at the time of death. Lastly, Figure D.3 shows an example of a miscellaneous
document in the files that I do not use in the analysis. The object detection algorithm
detected which images contained the relevant information and automatically cropped
the relevant parts of the images shown in Figure 6. I apply this algorithm to 3,261,708
document scans. Of those scans, 837,620 scans were detected to contain the relevant
information.

FIGURE 6: Example of relevant source information

(A) Decedent’s name, location, and date of death (B) Decedent’s wealth

Notes: the images above show an example of the relevant source information for the richest person in
the database, Johanna Jacoba Borski, who died in Bloemendaal, North Holland, on September 18th, 1912
with an estate worth 31.8 million guilders. These images are cropped automatically using a YOLOv5 object
detection algorithm. Panel A shows the part of the form that contains personal information of the decedent
and Panel B shows the part that contains information on the value of their assets, liabilities, and net worth.

After detecting and cropping the relevant parts of the source images, I then trained
another computer vision algorithm to extract information on the date of death and the
value of assets, liabilities, and net worth. This algorithm consists of several steps. First,
I trained an object detection algorithm to found the exact location of the relevant infor-
mation in the cropped image. Then, to extract the date of death, I trained three object
classification algorithms that respectively classify the date of death to be, e.g., the 18th
day of the month, the month of September, and the year 1912. Third, I trained an object
detection algorithm to detect each number that appears in the wealth data. Lastly, by
combining the detected numbers with the information on the detected location of assets,
liabilities, and net worth data, I construct the estimated wealth data.

An inherent advantage of the source files is that the wealth data present a direct test
of the accuracy of the digitization. That is, I test whether assets minus liabilities equals
net worth. The recognized numbers add up to the last digit in 82 percent of the cases. In
90 percent of the cases, the discrepancy is smaller than 20 percent.

For those images for which the recognized numbers do not add up exactly or for
which either assets, liabilities or net worth are not recognized, I input the images into
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OpenAI’s GPT-4o and request it to output assets, liabilities, and net worth. Since the
GPT-4o method is prone to errors, I only use this information if it can be validated with
the numbers obtained from the YOLO algorithm. That is, if net worth is consistent be-
tween YOLO and GPT-4o or if both assets and liabilities are consistent. This procedure
increases the number of cases for which net worth can be validated up to the last digit to
91.5 percent and those for which the discrepancy is below 20 percent to 96.8 percent.

To mitigate any remaining noise, I manually checked all observations that do not add
up exactly and where net worth is recognized to be larger than ƒ50,000—which would
place someone roughly in the top 10% of wealth nationally—, since those observations
are particularly important in shaping overall wealth inequality.

Name, date, and place of death I use OpenAI’s GPT-4o to transcribe the names, places
of residence, and places and dates of death. That is, I input the automatically cropped
images similar to Figure 6A into the GPT-4o API and request that it provides the first
name, prefix, surname, place of death, place of residence, and date of death reported in
the image.

Matching with existing civil registry data. I link the digitized dataset to existing high-
quality hand-collected information from the civil death registry. The civil death registry
cover the near-universe of deaths in the relevant provinces.16 The only exception is the
city of Amsterdam, for which the civil death registry is not digitized. I match the newly
digitized inheritance tax by (fuzzy) matching based on name, date of death, and inheri-
tance tax district.17 See Appendix D.3 for further details on this procedure.

Description of micro-level database. Table 1 summarizes the availability of key vari-
ables and the total number of observations for which these variables are observed. Around
79 percent of the observations can be linked to a record in the civil death registry. Outside
of Amsterdam, for which the registry is not available, the match rate is over 90 percent.
The civil registry data allow to narrow down the place of death to the level of the munic-
ipality. Furthermore, the civil registry data often contain the age at death.18 I assign all
observations from the tax office in Amsterdam to the Amsterdam municipality.

16The civil registry data can be downloaded in bulk at https://www.openarch.nl/exports/csv/.
17A tax district consisted of a set of municipalities. Since the inheritance tax files are arranged by tax

district, the tax district can be inferred without any transcription.
18The age at death was always record in the source data, but in some cases this information was not

included by the archive in the digitized version of the registry.
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TABLE 1: Number of observations

Subset Observations

Individuals with wealth data 380,131
of whom municipality is known 370,311

of whom a civil registry link is available 301,920
of whom age at death is known 256,093

Notes: This table shows the number of observations for which key information is observed. Besides rare
exceptions, each is a subset of the other, such that the bottom row reflects the number of individuals for
whom we observe their wealth, municipality, civil registry data, and age.

The resulting dataset on wealth during industrialization is unique in its size and geo-
graphic scope. The existing literature has focused on documenting national trends in the
wealth distribution. For instance, Lindert (1986) (UK) samples 12,581 estates across four
regions and five dates between 1670 and 1875, Piketty et al. (2006) (France) cover a ran-
dom sample of Parisian estates in selected years in the 19th century, and Bengtsson et al.
(2018) (Sweden) collect information on samples of around 5000 probate inventories be-
tween 1750 and 1900. This dataset is an illustration of the value of using newly available
technologies for scalable digitization of handwritten historical records. Furthermore, and
importantly for the purpose of this paper, it covers many regions in a period in which first
steam engines and then electric motors were adopted in the Netherlands.

4.1.2 Constructing Local Wealth Distributions

Using the micro-level data, I create a panel dataset on the local wealth distribution. I use
the smallest geographical unit, the municipality, as the unit of analysis. To ensure a suf-
ficient amount of observations per time period, I compute the distributional statistics by
decade.19 As described above, tax thresholds varied between ƒ300 and ƒ1000, but some
estates were assessed to have values below the threshold. Which estates were assessed
may have varied somewhat across tax offices and over time: the exact criteria under
which an estate was assessed are to my knowledge unknown. The need to avoid that
variations in assessments affect the measures of local inequality, would suggest to only
include decedents with an assessed wealth above ƒ1000 (as they should always have been
assessed). However, including as many people as possible reduces variance and makes
wealth statistics more representative of the overall population. I balance these interests
by including every decedent with assessed wealth above ƒ300, the lowest tax threshold,
in the sample on which measures of the wealth distribution are computed.

We do not directly observe decedents who were not assessed for the tax. In principle, it

19Since the dataset starts in 1879, I assign that year to the 1880s too.
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is possible to observe the total number of decedents and infer the number of individuals
below the threshold from there. However, this relies on the estate files to be complete
and the algorithm to recognize all the relevant files. Experimentation showed that the
coverage is close to complete for most regions and periods but is likely low for a subset
of them. Therefore, I focus on measures of inequality among those who were taxed,
roughly the top 20 percent of the wealth distribution among decedents.

The distribution of wealth among decedents is likely different from that of the liv-
ing. To control for “selection into death”, one can weight each tax return by the inverse
probability of death given their age (e.g., Kopczuk and Saez, 2004). However, weighting
comes with a few disadvantages. First, while it reduces bias, it can substantially increase
variance because it places a high weight on a small set of young decedents. This issue
is particularly pressing when estimating inequality in smaller local units. Second, more
practically, age is not observed for about a third of the observations. I therefore use un-
weighted estimates as the baseline measures of wealth inequality. However, as a test of
the sensitivity to weighting, I impute the age when missing, and compute wealth statis-
tics based on those.20 I find that weighted and unweighted measures of wealth inequality
are strongly correlated across space and time (e.g., for the top 1% share, the correlation is
0.90). In the main analysis, I show robustness to using the weighted estimates.

4.1.3 Complementary Data on Local Income Distributions

I uncovered and digitized sources on local income distributions. First, I uncovered a
parliamentary document that recorded a detailed distribution of income for 79 munic-
ipalities in 1883, including many large cities.21 Specifically, it indicates the number of
inhabitants within 41 income brackets for each municipality. These data were derived
from local income tax administrations. I also collected data from local archives on the in-
come distributions of 8 additional cities with a local income tax whose distribution was
not included in the parliamentary study.22

I find that local income inequality is strongly correlated with measures of wealth in-
equality from the inheritance tax data. Since the income brackets are extremely narrow
(and in many cases only included one or a few people), I compute income inequality
under the assumption that each individual earned the midpoint of their bracket. Figure
A.3 plots income and wealth inequality at the municipal level for those municipalities for
which both are observed. The correlations vary between 0.88 and 0.93 across inequality

20Specifically, for individuals for whom the age is unknown, I set their weight equal to the average
weight of a return in the relevant local wealth decile, province, and decade.

21Tweede Kamer (House of Representatives) 1883-1884 kamerstuknummer (document number) 172.13. The
source file can be found here.

22The cities are: Breda (1880), Vlissingen (1883), Enschede (1880), Utrecht (1888), Delft (1893), Eindhoven
(1885), Hilversum (1880), Nijmegen (1880). The sources for these cities are documented in Appendix D.2.
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measures, providing strong evidence that the constructed wealth (and income) data are
reliable. Second, it shows that, practically speaking, whether one uses data on income or
wealth inequality on the local level is not likely to affect conclusions qualitatively.

4.1.4 Manufacturing

I further newly digitize data on manufacturing by Dutch municipality for the years 1816-
1819 and 1930. The first official Census of Companies (“Bedrijfstelling”) in the Nether-
lands was performed in 1930. It offers a high-quality snapshot of manufacturing by in-
dustry by municipality.23 This source provides information on the number of establish-
ments and workers by size class by industry by municipality and the adoption of motive
power (in horsepower).24 Importantly, it breaks down motive power by electric motors
driven by purchased energy and other motive power (i.e., steam engines or electric mo-
tors driven by steam engines in the plant). Figure D.4 provides an example of a source
page. In total, the data consists of 33,134 municipality-by-industry observations.

The data for the years 1816 and 1819 derive from two government surveys of which
results are compiled and published in print by (Brugmans, 1956; Damsma et al., 1979).25

The survey data contain, by municipality, information on the number of establishments
and workers for each type of establishment (e.g. tannery or cotton factory). Where data is
available for both 1816 and 1819, I use the data for 1819. I added the results for the munic-
ipality of Rotterdam and neighbouring municipalities—which were excluded by (Brug-
mans, 1956; Damsma et al., 1979)—from (Korteweg, 1926). Brugmans (1956); Damsma
et al. (1979) were not able to retrieve the survey results of all municipalities in three out of
eleven provinces (Zuid-Holland, Overijssel, and Groningen). The final data contain 3,658
municipality-by-industry observations in 539 distinct municipalities and cover nearly all
large cities and other places with a strong manufacturing presence.26

For comparability across years, I coded each industry or establishment type to its rel-
evant 2-digit ISIC industry code.

23While it also provides information on non-manufacturing firms, I have digitized the data only
for manufacturing firms. Source images can be downloaded from https://doi.org/10.17026/

dans-xqs-5q6e.
24The establishments are broken down by those employing none or one person, 2 to 5 persons, 6 to 10

persons, or 11 or more persons.
25The source images can be downloaded from https://resources.huygens.knaw.nl/nijverheid.
26Around 1200 municipalities existed at the time. For eight out of eleven provinces, (Brugmans, 1956;

Damsma et al., 1979) retrieved the complete returns of the surveys so that any “missing” municipalities are
likely to not have had any significant manufacturing presence. For the remaining three provinces, some
municipalities may be missing despite some manufacturing industry.
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4.2 United States

4.2.1 Manufacturing

For the United States, I rely onthe tabulations of the decennial Census of Manufactures by
state and industry. I digitized and compiled these data for each decade year between 1850
and 1940 and for 1947. The information in the Census of Manufactures varies somewhat
from year to year, but key variables such as the number of establishments, employment,
and value added are available for each year. Furthermore, for 1870 and onward, the tab-
ulations report the adoption of power technologies such as water wheels, steam engines,
and, later, electric motors and electricity use. The industry classification is detailed: the
number of distinct industries averages 386 across years. In total, the data comprise of
51,263 state-industry-year observations.

Since industry classifications changed over time, I created two crosswalks that allow to
compare industries over time. The first covers all industries between 1860 and 1900, the
period of most rapid steam engine adoption, and consists of 182 industries. This cross-
walk is an extension of the 1860 to 1880 crosswalk published by Hornbeck and Rotem-
berg (2021). The second crosswalks consists of 206 harmonized industries across the six
censuses between 1890 and 1940. To create this second crosswalk, I used tabulations by
industries over time published in the Census of Manufactures.27 I also coded each Cen-
sus of Manufactures industry to the 1950 Census Bureau industrial classification system
to allow matching with the IPUMS USA population censuses between 1850 and 1940. To
further improve consistency, I drop “hand trades” such as blacksmithing, carpentering,
and masonry from the data as these industries were no longer included in the Census of
Manufactures from 1909 onward.

4.2.2 Coal Resources and Hydropower Potential

To construct instrumental variables for steam and electric power adoption, I use data on
coal resources and hydropower potential by state. Data on historical coal resources by
county are taken from the National Coal Resources Data System from the United States
Geological Survey (USGS).28 The dataset contains information on the “rank” (i.e., type)
of coal, the estimated tonnage available, the thickness of the field, and the “overburden”
(i.e. the depth of the material that lies above the coalfield).

Hydropower potential is defined as the total horsepower of energy that can be feasibly
generated by waterpower given the topographic characteristics of the area. The USGS

27In particular, I mostly used “comparative summaries” and descriptions of industry classifications in
the appendices in the Census of Manufactures.

28The source file can be downloaded from https://www.usgs.gov/media/files/uscoal.
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published estimates of hydropower potential of each state at various points in time. I use
the estimates of hydropower potential published in (Young, 1964, Table 10).29

Hydropower potential is defined as the total horsepower of energy that can be feasibly
generated by waterpower given the topographic characteristics of the area. Importantly,
it covers both developed and undeveloped sites. Estimates of hydropower potential of
each state were published by USGS at various points in time. I use the estimates of
hydropower potential published in (Young, 1964, Table 10).30 Figure A.5 shows a map of
hydropower potential across the United States.

5 Scale-Biased Technical Change and Firm Size

This section documents the impact of the adoption of steam power—large-scale-biased
technical change—and electric power—small-scale-biased technical change—on estab-
lishment sizes. The theory predicts that steam power adoption increases the average
establishment size, while electric power adoption decreases it. I verify this prediction
using exogenous geographical variation in the costs of the two technologies.

Instruments. I use a state’s coal access as an instrument for steam power adoption.
To construct the instrument, I first compute the total coal resources in British thermal
units (Btu) for each county from the USGS coal resources data.31 Recognizing that coal
was traded across counties, I then compute a measure of “coal access” by county similar
to the measure of market access used by Donaldson and Hornbeck (2016). That is, for
destination county c in state s, coal access is given by

COALs
c = ∑

o
τ−θ

oc BTUo (16)

where τoc ≥ 1 is the “iceberg cost” of transporting coal between counties o and c in 1830, θ

is the trade elasticity, and BTUo is the total amount of coal resources in county o measured
in Btu.32 Intuitively, the coal resources in county o more strongly count towards county

29Since water flow can vary seasonally, hydropower potential may not be constant within a year. I use
estimates of hydropower potential available 50 percent or more of the time.

30Since water flow can vary seasonally, hydropower potential may not be constant within a year. I use
estimates of hydropower potential available 50 percent or more of the time.

31Following Averitt (1975), I convert the tonnage of coal of different ranks to Btu using the following
ratios: Anthracite, 12,700 Btu per pound; bituminous coal, 13,100 Btu per pound; subbituminous coal, 9,500
Btu per pound; lignite, 6,700 Btu per pound. I include the coal resource only if the overburden is less than
3,000 feet and the thickness is more than 14 inches for anthracite and (sub)bituminous coal or more than 28
inches for lignite (Averitt, 1975).

32Specifically, as in (Donaldson and Hornbeck, 2016; Hornbeck and Rotemberg, 2021), τoc = 1 +
toc/P̄coal . I set P̄coal = 6.08 to the average dollar price of a ton of anthracite coal in 1830, Philadelphia
(Chandler, 1972, Table 2). toc, is the transportation cost per ton-mile between counties o and c in 1830, and
the trade elasticity θ = 8.22 are taken from (Donaldson and Hornbeck, 2016).
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c’s coal access if the transportation costs between these counties is low. Importantly, I use
transportation costs before the introduction of the railroads to avoid that the instrument
reflects potentially endogenous infrastructure investments. Similarly, I use estimates of
coal resources prior to mining to avoid endogeneity arising from selective mining. Figure
A.4 shows the spatial distribution of coal access on the county-level.

Hydropower potential serves as the instrument for electric power adoption. Impor-
tantly for exogeneity, the measures reflect the potential to generate energy with water
power, and thus capture both developed and undeveloped power sites. Figure A.5 shows
a map of hydropower potential across the United States.

Coal access and hydropower potential are not correlated at the state-level (Figure A.8,
ρ = 0.03), such that the instruments have strong power in distuinguishing the effects of
steam and electric power.

First stage: coal access. Coal access strongly affected coal prices and, as a result, steam
power use (see Table B.1). The correlation between coal access and prices is -0.58 on the
state-level (see Figure A.6). Because coal was an important input to steam power produc-
tion, coal access also affected the adoption of steam. In 1890, the Census of Manufactures
reported steam engine and other power use for each state-industry combination. For that
year, I estimate

STEAMist = δi + θ log (COALs) + ϵist (17)

where the subscripts i, s, and t refer to industry, state, and year, respectively. STEAMist

refers to measures of steam power adoption, i.e., steam engines’ horsepower per em-
ployee and the share of steam engines in total horsepower. COALs is the measure of
state s’s coal access, computed as the average coal access of the counties in state s as
given by equation (16).

First stage: hydropower potential. Hydropower potential had a strong effect on elec-
tricity prices and electric power use (Table B.3). Figure A.7 shows hydropower potential
and electricity prices in each state in 1929, with a correlation of -0.56. I estimate the effect
of the instrument (hydropower potential) on the use of purchased electric energy, first
reported in 1939. That is, I estimate for the year 1939:

ELECTRICITYist = δi + θ log (HYDROs) + ϵist.33 (18)

ELECTRICITYist refers to two measures of electric power use: the total megawatt hour
of purchased electric energy per employee and the cost of purchased electric energy as a
share of total fuel costs.34 log (HYDROs) is the logarithm of state s’s hydropower poten-

33For simplicity, I chose notation identical to (17). Of course, the parameters in (17) and (18) are different.
34The megawatt hour of purchased electric energy per employee is obtained by dividing the cost of

purchased electricity by the average price of electricity per MWh for manufacturers in the state in 1939.
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tial.

Reduced form. I estimate the reduced form effects of coal access and hydropower
potential on the firm size jointly using the following regression equation:

log (yist) = αs + ηit + ∑
k∈T

[βk log (COALs) Dtk + γk log (HYDROs) Dtk] + λ′Xst + εist

(19)
where the subscripts i, s, and t refer to industry, state, and year, respectively, Dtk is a
dummy that is 1 if t = k and 0 otherwise and T contains all but one reference census
year. yist is the average firm size (in terms of employment). Xst is a vector of controls
on the state-year level: it contains the density of the population in state s at time t and
interactions between time and “market access” in state s.35 Controlling for market access
interacted with time ensures that the estimated effect of access to coal does not reflect
low-cost access to consumer markets.

The results are in line with the predictions of the theory that steam power increased
establishment sizes while electric power decreased it. Figure 7 shows the estimates and
95% confidence intervals for the effects of coal access and hydropower potential across
years. I find that firm sizes in states with high coal access—adopting more steam power—
grew from 1850 onward relative to other states. In contrast, states with high hydropower
potential—adopting more electric power—experienced relative reductions in average
firm sizes. Importantly, as depicted in Figure 7B, there were no differential trends in firm
size based on hydropower potential prior to the electric motor’s introduction between
1890 and 1900, providing evidence for the validity of the instrument.

I find evidence for the exclusion restriction that the instruments only affect the out-
comes through their effect on power use. First, I find that firm sizes in industries that
used little power nationally in 1890 were not affected by coal access (see Figure A.9).
Specifically, I estimate equation (19) for the years between 1860 and 1900, now including
state × industry fixed effects using the 1860 to 1900 industry crosswalk. I estimate this
equation separately for a set of “placebo” industries—industries in the bottom quartile of
power usage in 1890—and the remaining “treated” industries.36 Similarly, hydropower
potential only affected firm sizes in industries that used electric motors (see Figure A.10).
To test this, I run the same procedure for the years between 1890 and 1939. For electric
power, I define placebo industries as those in the bottom quartile of the share of pur-
chased electricity in overall fuel costs.

The average price was, in turn, computed by dividing the total cost of purchased electric energy in the state
(Census of Manufactures 1939, Volume 1, Ch. VII, Table 3) by the quantity purchased in MWh. (Census of
Manufactures 1939, Volume 1, Ch. VI, Table 6).

35I compute market access by county for the year 1830 (before railroads) as in (Donaldson and Hornbeck,
2016) and average it to the state-level.

36Power usage is defined as the share of establishments reporting any power use.

29



FIGURE 7: Effects of coal access and hydropower potential on firm sizes
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(B) Hydropower potential
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Notes: Panel A and B of this figure show estimates of the reduced form effects of coal access and hy-
dropower potential on firm sizes relative to the base year, accounting for industry and state fixed effects.
Estimates in Panel A and B are jointly estimated in one specification (see equation (19) for the econometric
specification), the only difference being the base year relative to which the estimates are estimated. Shaded
areas represent 95% confidence intervals. Standard errors are clustered at the state-level.
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Instrumental variable regression. I quantify the effect of steam and electric power
adoption on the firm size using an instrumental variable regression for two distinct pe-
riods: 1860 to 1890 for steam engines and 1900 to 1939 for electric motors. Specifically,
I regress state-by-industry firm size growth on technology adoption, instrumented by
hydropower potential and coal access. That is, I estimate

log (yis,1890)− log (yis,1860) = α1 + β1STEAMis,1890 + λ′
1Xis + εis (20)

log (yis,1939)− log (yis,1900) = α2 + β2ELECTRICITYis,1939 + λ′
2Xis + ηis (21)

where STEAMis,1890 and ELECTRICITYis,1939 are steam engine horsepower per worker
in 1890 and megawatt hour of purchased electricity per worker in 1939. Both are trans-
formed using the inverse hyperbolic sine function and instrumented as described.

Table B.4 shows the results of the instrumental variable regressions in equations (20)
and (21). The estimate in the first column suggest that a 1% percent increase in steam
engine use led to an increase in average firm size of about 1.1%. The second and third
columns explore the sensitivity of the estimates to changes in the set of controls. While
steam power increased firm size, column four to six show that electric power adoption
decreased it with an elasticity of around -0.4.

Further evidence using city-level data. I show that the state-level estimated effects of
power on establishment sizes are qualitatively and quantitatively similar when estimated
on the city-level. From 1880, the Census of Manufactures also tabulated data by city and
industry, for some cities and industries. I use the data from these tabulations digitized by
Lafortune et al. (2019). Figure A.11 shows that the effects estimated using city-level data
line up qualitatively and quantitatively with the state-level findings: cities with more
coal access see a steady increase of establishment sizes over time, while cities with more
hydropower potential see a sharp decline in establishment sizes after 1900.

An advantage of the city-level data is that they allow to separate any effect hydropower
may have had through its effect on water wheel adoption from its effect through electric
power adoption.37 Water wheels required hydropower potential at the site of the plant
itself. In contrast, electric energy can be transmitted over long distances. Electricity was
for a large part regulated and priced at the state-level (Stigler and Friedland, 1962).38 This
meant that out-of-city-within-state hydropower potential affected local electricity prices.
However, such hydropower potential could not have affected the establishment sizes
through water wheel adoption. Using estimates of hydropower potential on the county-
level provided by (Gaggl et al., 2021), I find that the effects of hydropower potential are
driven by hydropower potential out of the city, suggesting that water power adoption

37Table B.2 showed that hydro-potential had some effect on water power use.
38Almost no electricity was purchased from other states. Only 5.7 percent of electricity crossed state-

borders in 1932 (Morin, 2015).
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did not contaminate the estimated effects of electric power much (see Figure A.12).

6 Scale-Biased Technical Change and Inequality

In this section, I study the predictions the theory related to the distributional effects of
scale-biased technical change. I first show using data from the Census of Manufactures
that steam power increased the profit-wage ratio, a measure of income inequality be-
tween workers and entrepreneurs, while electric power decreased it. Furthermore, by
using wealth data from the 1860 and 1870 US Census, I find that profit-wage ratios are
indeed strongly correlated with inequality between households.

I then test directly whether steam and electric power had opposite effects on inequal-
ity. I use the Dutch panel data on local wealth inequality. Local wealth inequality, in
addition to being a measure of economic inequality in its own right, was strongly cor-
related with local income inequality (see Section 4). I find that wealth inequality rose in
municipalities with high steam power adoption, while it declined in those with high elec-
tric power adoption. For identification purposes, I exploit that some municipalities were
more exposed to the use of these technologies given their industry composition within
manufacturing in 1816, long before the widespread adoption of either technology.

6.1 (Why) Does the Firm Size Distribution Matter For Inequality?

In the model in Section 2—where each entrepreneur owns one firm—the ratio between
the average profits and the wage is a perfect measure of income inequality between work-
ers and entrepreneurs. The free entry condition in equation (9) suggests that this ratio is
proportional to the average firm size. Specifically, it implies

log
(

π̄is

wis

)
= constant + log (firm sizeis) . (22)

That is, the larger is the average firm size (measured in employment per worker), the
larger is the average profit of an establishment relative to the wage.

Figure A.13 confirms that a strong relationship exists between average profits and firm
size in the Census of Manufactures data. For the years between 1890 and 1920, the data
allows to follow Atack and Bateman (2008) by computing profits as output minus wage
costs, raw materials, capital costs, and miscellaneous expenses.39 The average wage is
approximated by the total wage bill divided by the number of workers. A potential issue

39I approximate capital costs as 4.33 percent of the capital stock. Atack and Bateman (2008) assumed a
different capital cost rates for plants (2%) than for equipment (6.67%). Since I can not distinguish between
different types of capital, I use the average of these two rates.
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with this measuring wages by dividing the wage bill by the number of workers is that the
hours worked per worker may vary with firm size, biasing the result. However, when
using establishment-level data for 1880 where the average wages are directly observed—
digitized by Atack and Bateman (1999)—, I find an almost identical relation between firm
sizes and profit-wage ratios (Panel B of Figure A.13).

Consistent with the theoretical prediction, I find that the effects of steam and electric
power on profit-wage ratio are quantitatively similar to the effects on firm size (Figure
A.14). That is, steam power increased the average profits of an establishment relative
to the average wage of a worker. From the perspective of the theory, this is expected
because high fixed cost technologies push up the average firm size (and thus profits)
relative to the wage. The methodology to estimate these effects is identical to those used
in Section 5, except that the outcome variable is now the profit-wage ratio in industry i,
state s, and year t. Because data on the capital stock and “miscellaneous expenses” are
not available for all years, I approximate average profits as value added minus labor costs
per establishment.40 Table B.5 shows the IV estimates of the elasticity of the profit-wage
ratio to steam and electric power adoption.

I find that the profit distribution among firms matters for the income distribution
among people. Using US micro-level data on wealth from 1870, the last year for which
such data is available, I show that firm sizes and profit-wage ratios strongly correlate with
measures of wealth inequality. To do so, I compute wealth inequality between people in
a given state and industry in the 1870 Census of Population and merge these measures
with data from the 1870 Census of Manufactures.41 To identify entrepreneurs, I use that
the occupational code “manufacturer” in the 1870 census was reserved for owners of es-
tablishments.42 The unconditional average wealth of an entrepreneur was 16 times larger
than that of a worker. Panels A and B of Figure 8 show that this wealth gap was larger
in state-industry pairs with larger average establishment size and larger profit-wage ra-
tios. The elasticity is close to unitary, as predicted by the model: a one percent increase in
the profit-wage ratio is associated with a 0.99 percent increase in the entrepreneur-worker
wealth gap. Since entrepreneurs dominate the very top of the distribution, top 1% wealth
shares are similarly correlated with firm sizes and profit-wage ratios (Panels C and D of
Figure 8). These results show that the profit-wage distribution is a highly informative
measure of inequality.

40The correlation between this measure of average profits and the measure used by Atack and Bateman
(2008) is high: 0.75 in levels and 0.96 in logs.

41I harmonize industry groups between the Census of Manufactures and the Census of Population by
aggregating industries in the manufacturing data to the 1950 industry classification

42The instructions to census enumerators included: “Do not call a paper-bonnet maker a bonnet man-
ufacturer [..]. Reserve the term Manufacturer for proprietors of establishments: always give the branch
of manufacture.” I therefore assume individuals with occupational code 198 “manufacturer” to be en-
trepreneurs and those with any other manufacturing occupations (codes between 130 to 265, including
198) to be workers.
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FIGURE 8: Wealth inequality correlates strongly with firm size and profit-wage ratios

(A) Firm size and entrepreneurial wealth
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(B) Profit-wage ratio and entrepreneurial wealth
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(C) Firm size and top 1% wealth share
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(D) Profit-wage ratio and top 1% wealth share

.2

.4

.6

.8

1

To
p 

1%
 w

ea
lth

 sh
ar

e

1 2 3 4 5 6
Profit-wage ratio (in logs)

Correlation: 0.718
Slope: 0.131*** (0.004)

Notes: These figures show the relationship between state-industry level data on firm sizes and profit-wage
ratios and measures of wealth inequality between households that are active in those state-industry pairs
in the United States. Wealth inequality is computed from micro-level wealth data from the 1870 Census
of Population. Firm sizes and profit-wage ratios are computed from the Census of Manufacturing. The
Census of Manufacturing industries are converted to 1950 industry for consistency with the Census of
Population. State-industry pairs are weighted by the number of individuals for which wealth is observed.

6.2 Wealth Inequality

The finding that steam power increased the profit-wage ratio and electric power de-
creased it, coupled with the strong correlation between profit-wage ratios and inequality,
suggests that steam increased inequality, while electricity decreased it. In this subsection,
I use the newly digitized wealth data from the Netherlands to provide further evidence
on the effect of scale-biased technical change on inequality.

I use the digitized Dutch inheritance tax data described in section 4 to create various
measures of local (municipality-level) wealth inequality for the period between 1879 and
1927. In the analysis, I only use municipality-time measures of wealth inequality that
are based on at least a hundred observations. This yields 819 municipality-decade ob-
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servations from 210 distinct municipalities. With this dataset, I first study how wealth
inequality evolved across municipalities with varying rates of adoption of steam and
electric power adoption in manufacturing.

I measure power adoption in each Dutch municipality using the newly digitized 1930
Census of Dutch Companies. These data divide establishments in three groups: 1) those
using prime movers run by energy generated in the plant, 2) those only using prime
movers run by purchased electricity, and 3) those not using any prime movers at all. The
measure of local steam power adoption in municipality m, STEAM1930,m, is the share of
workers in the first type of establishments. Similarly, electric power adoption, ELECTR1930,m,
is the share of workers in the second group of establishments.

The main specification is as follows:

ymt = α1m + η1t + ∑
k∈T\{1880}

β1k (STEAM1930,m × Dtk) + ε1,mt (23)

ymt = α2m + η2t + ∑
k∈T\{1880}

β2k (ELECTR1930,m × Dtk) + ε2,mt (24)

where the subscript t ∈ T = {1880, 1890, 1900, 1910, 1920} refers to the decade, m to the
municipality and Dtk is a dummy that 1 if t = k and 0 otherwise. The dependent variable
ymt is a moment of the wealth distribution, e.g., the top 1 percent wealth share. The
coefficients β1k and β2k capture the association between steam power and electric power
adoption and the change in wealth inequality from 1880, the reference year, to year k. I
run this analysis on each of the 169 municipalities for which enough wealth observations
are available in each decade to compute top 1% wealth shares.

Figure 9 shows that places experiencing large-scale-biased technical change saw a rela-
tive increase in wealth inequality, while small-scale-biased technical change is associated
with decreases in inequality. Figure 9A shows that places with more steam power adop-
tion saw a relative increase in the share of wealth owned by the top 1 percent. The co-
efficients suggest that a 1 percentage point increase in the share of employment exposed
to steam power leads to an increase in the top 1% wealth share of about 0.2 percentage
points. This effect is statistically and economically significant. Local steam power adop-
tion varied strongly: around 10 percent of municipalities adopted no steam power at all,
while in some municipalities more than 90 percent of manufacturing employment was in
steam-powered establishments. A one standard deviation increase in steam power adop-
tion (0.2) increases the top 1% wealth share by around 4 percentage points in 1920. The
average top 1% wealth share across municipalities was 21 percent. In contrast, Figure
9B shows that the adoption of electric power correlates with a decrease in top 1 percent
wealth shares. Figure A.15 shows that results are almost identical when using weighted
estimates of wealth inequality as the dependent variable.
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FIGURE 9: Steam power increased wealth inequality, electric power decreased it

(A) Steam power effect
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(B) Electric power effect
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Notes: This figure shows the estimated effects in percentage points of steam power (in panel A) and electric
power adoption (in panel B) on within-municipality top wealth inequality for each decade relative to 1880.
The econometric specifications are detailed in equations (23) and (24). Observations are weighted by the
number of individuals on which the inequality measure is based. Shaded areas represent 95% confidence
intervals.

The results so far show the evolution of wealth inequality in municipalities along one
dimension of power use (steam power or purchased electric power). When purchasing
electric power adoption is low, this could be because mainly steam power was used or
because there was little power use of any kind. To directly compare the effect of steam
power adoption and electric power adoption, I also estimate equation (23) while control-
ling for the share of employment in establishments that did not use any power in 1930,
NOPOWER1930,m.43 Since STEAM1930,m, ELEC1930,m, and NOPOWER1930,m sum to one
by construction, the coefficient of interest in this regression reflects the increase in wealth
inequality associated with a 1 percentage point increase in steam power use and a 1 per-
centage point decrease in purchased electric power use. The results are shown in Figure
A.16. It shows that holding total power usage constant, wealth inequality increased in
places where more steam power was used relative to places that relied more on electric
power.

Lastly, Figure A.17 shows how different parts of the wealth distribution are affected.
It shows that power use is most strongly correlated with the very top wealth inequality
measures. The more one zooms into the top—from the top 25% to the top 1%—the more
strongly is steam power (relative to electric power) correlated with an increasing share
of the top relative to its complement. This too, is consistent with the theory: since most
entrepreneurs are at the very top of the distribution, large-scale-biased technical change

43That is, I estimate:

INEQUALITYmt = α3m + η3t + ∑
k∈T\{1880}

[β3k (STEAM1930,m × Dtk) + γ3k (NOPOWER1930,m × Dtk)]+ ε3,mt.
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mostly implies an increase in inequality within the higher end of the distribution.

Instrumental variable analysis. The municipality-fixed effects specifications in equa-
tions (23) and (24) control for any time-invariant unobserved heterogeneity across munic-
ipalities. Time-varying heterogeneity is a potential remaining threat to causal interpre-
tation of the coefficients in Figure 9. For instance, it is a priori conceivable that changes
in local inequality between 1880 and 1920 also affected technology adoption, leading to
reverse causality. To assess the quantitative importance of such threats to identification,
I employ an instrumental variable strategy.

The identification strategy uses that the local industry composition in manufacturing
in 1816 (see Section 4.1.4 for details on the data) is predictive of the local adoption rates
of steam and electric power. To construct the instrument, I first use the Dutch manufac-
turing data from 1930 to compute each 2-digit industry i’s adoption of steam and electric
power.44 Then, I calculate the employment share of each industry within total manufac-
turing in 1816 in each municipality. I combine these into a measure of exposure to steam
and electric power in municipality m in 1816 as:

STEAM EXP1816,m = ∑
i∈I

Employment in industry i in m in 1816
Total employment in m in 1816

× STEAM1930,i (25)

ELECTR EXP1816,m = ∑
i∈I

Employment in industry i in m in 1816
Total employment in m in 1816

× ELECTR1930,i. (26)

where the adoption rates on the industry-level STEAM1930,i and ELECTR1930,i, are com-
puted analogously to those on the municipality-level, STEAM1930,m and ELECTR1930,m.
The exposure measure is a strong predictor of actual adoption in 1930 (see Table B.7 for
the correlation).

I estimate the “reduced form” of the instrumental variable analysis equivalently to
equations (23) and (24) except that the actual adoption rates are changed for the pre-
dicted rates in equations (25) and (26). That is, I estimate how wealth inequality evolved
between 1880 and 1927 across municipalities that were more or less exposed to the two
types of power.

Figure A.18 shows that places more exposed to steam power became more unequal,
while places more exposed to electric power became more equal, providing further ev-
idence that steam and electric power causally affected inequality in opposite ways, as
predicted by the theory.

44Table B.6 shows the adoption rates for each manufacturing industry. The textile industry, together
with the much smaller beverage industry, was the largest adopter of steam power, with half of employment
in establishments using steam. On the other hand, the leather, apparel, tobacco, and printing industries
barely used any steam at all.
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7 Who Gains from Large-Scale-Biased Technical Change?

Section 6 showed that steam power increased inequality, while electric power did not.
The last question I ask is: who were the main beneficiaries of steam power? In this sec-
tion, I zoom in to Enschede, the major Dutch textile city, to understand who was capturing
the rents from large-scale-biased technical change. I find that the rise in wealth inequal-
ity was almost entirely due to the textile factory owners who amassed wealth at a much
higher rate than other households. This finding confirms the prediction of the theory of
scale-biased technical change that the concentration of business income, not of wages,
was the key driver of increased inequality.

I selected Enschede for this case study because, being a major textile producer, it heav-
ily relied on steam power and witnessed a strong increase in wealth inequality. Figure
A.19 charts the wealth share of the top 1% over time. Another advantage of studying
Enschede is that the history of its textile industry is well documented and the identities
of the factory owners are known.

The foundations of the textile industry in Twente, the region around Enschede, had
already been laid in the 16th century. At that time, many Flemish entrepreneurs had their
linen woven in Twente, due to its attractive position between Amsterdam and northern
Germany (Schot et al., 2003). By 1750, 40% of the local labor force worked in the textile
industry, predominantly at home. Since textile manufacturing was the industry most
exposed to steam power (see Table B.6), Enschede’s rate of adoption of steam power was
among the highest in the country.

The theory predicts that large-scale-biased technical change impacts inequality through
the profits accrued by entrepreneurs. Therefore, one should expect to see that wealth in-
equality is driven mostly by them. To test this prediction, I compute the evolution of
average wealth in different parts of the wealth distribution on samples including and
excluding textile factory owners. Specifically, I exclude people from the sample if they
belong to one of the 22 families that are considered within the “core” and “inner circle”
of textile factory owners by Willink (2015). I use the last name as a proxy for family
membership.45

To make the data for Enschede as accurate and representative as possible, all the
wealth data for the tax office in Enschede, which covered the city of Enschede and sur-
rounding towns, were manually entered from tables containing all decedents (not just
those assessed for taxes) and linked to the civil registry. The source of the wealth data in

45The 7 families belonging to the “core” (Willink, 2015, Ch. 12) are: Blijdenstein, Ten Cate, Van Heek,
Jannink, Ter Kuile, Scholten, and Stork. The 15 families in the “inner circle” (Willink, 2015, Ch. 13) are: Van
Delden, Elderink, Van Gelderen, Gelderman, Hofkes, Ter Horst, Jordaan, Ledeboer, Menko, De Monchy,
Palthe, Salomonson, Spanjaard, Stroink, Willink
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the tables were the inheritance tax records that I digitized more generally, and I find that
the agreement between the two sources is almost perfect for decedents that are taxed.
The benefit of the tables is that they also include decedents that were not assessed for
the tax (while the cost is that they are much harder to reliably digitize than the inheri-
tance tax files I use on a large scale).46 The database contains 50,019 decedents, of which
27,753 were older than 20 years at the time of death. Of those 27,753, wealth is directly
observed for 12,780 individuals, and assumed to be zero for the others. 2.6 percent of the
population is classified to be part of a textile family.

Figure 10 shows that entrepreneurial wealth in textile manufacturing is driving the
large increase in wealth inequality in Enschede. Figure 10A shows the mean wealth
at death for different percentile groups. It illustrates that wealth inequality increased
through a divergence of the top 1 percent from the rest of the distribution. Most impor-
tantly, panel B shows that wealth inequality among everyone except the textile families
Figure 10B did not go up. These patterns indicate the importance of studying inequality
in the overall population, not only among wage earners. Scale-biased technical change
primarily affects the concentration of business income. Therefore, it most strongly affects
the income of top business owners relative to the rest of the distribution.

FIGURE 10: Wealth inequality is driven by entrepreneurs adopting steam power
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Notes: This figure shows the evolution of mean wealth by percentile group in Enschede, a major textile
producing city in the Netherlands. Panel A shows the evolution when estimated on the full population,
while Panel B excluding individuals belong to the 22 most important textile factory owning families as
defined by Willink (2015). For each year, the average wealth is computed from the sample of decedents in
a 10-year window around it.

8 Conclusion

In this paper, I highlight a new channel through which technical change affects inequal-
ity: scale bias, the degree to which technical change increases the relative productivity of

46Figure D.5 shows an example of a source image.
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large firms. I show that technical change is large-scale-biased if it increases fixed costs.
When fixed costs of a new technology are sufficiently high, only the largest firms opt to
incur the fixed cost to reduce marginal cost, while smaller firms keep using the existing
technology or even go out of business. As a result, profits concentrate into a smaller set
of firms. With fewer and larger firms, top entrepreneurs are capturing a larger share of
the profits, pushing top income inequality up.

I showed that the adoption of steam and electric power in manufacturing offer a
unique opportunity to test the theory: while the two technologies are otherwise simi-
lar, the fixed costs of steam power was an order of magnitude larger. I then tested the
theoretical predictions on the effects of steam power adoption (large-scale-biased) and
electric power adoption (small-scale-biased). I found that the effects of these technolo-
gies were in line with the theory’s prediction: steam power increased firm sizes and
inequality while electric power reduced it.

While this research shows that entrepreneurs and their incomes are key for shaping
and understanding inequality, existing work primarily focuses on the impact of techni-
cal change on wage inequality, not overall income inequality.47 The effect of technical
change on the distribution of business income and inequality between workers and en-
trepreneurs has, to the best of my knowledge, so far not been studied empirically. This is
an important omission, because business income is a large source of income, especially
at the top of the distribution. In the US, more than half of total income for the top 0.1 per-
centile is business income (Smith et al., 2019). Similarly, 81 percent of individuals in the
top 1 percent of the wealth distribution was a business owner or self-employed (Cagetti
and De Nardi, 2006).

Even today, the concentration of firm ownership is high, so that the distribution of
profits across firms matters for the distribution of income across people. In the US,
“pass-through” businesses account for 51 percent of all business income in 2013 (Nel-
son, 2016).48 The typical such business is owned by one to three people (Smith et al.,
2019) and 69% of its income accrues to the top 1% (Cooper et al., 2016). The great bulk
of the remaining income is earned by a small share of publicly traded firms (Clarke and
Kopczuk, 2017). While ownership of publicly traded firms is less concentrated, it is not
as diffuse as commonly thought. For instance, among a random sample of US publicly
traded firms, 96 percent had shareholders that own at least 5% of the stock, and in 53
percent of firms, the largest shareholder is a family (Holderness, 2009).

47As a notable exception, Moll et al. (2022) recently expanded the scope beyond wage inequality by
studying automation’s effect on income (and wealth) derived from wages and capital: by raising the re-
turns to capital, automation increases income and wealth inequality.

48Pass-through businesses are businesses that are not subject to corporate tax and whose income instead
“pass through” to their owners to be taxed under individual income tax. Specifically, they comprise S-
corporations, sole proprietorships, and partnerships.
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The theory of scale-biased technical change and inequality provides a unified frame-
work to understand three major macroeconomic trends in the last three decades. First,
firm size concentration is increasing (Autor et al., 2017, 2020; Kwon et al., 2024) and there
is decline inentrepreneurship (Salgado, 2020; Jiang and Sohail, 2023), mostly driven by
entry costs Kozeniauskas (2024). A large and growing literature relates these patterns to
technical change, specifically the growing importance of scale advantages arising from
intangible capital and information technology (Brynjolfsson et al., 2008; Hsieh and Rossi-
Hansberg, 2023; De Ridder, 2024; Lashkari et al., 2024; Kwon et al., 2024). Unger (2022)
shows that specifically customized software (large fixed cost) is highly skewed to large
firms, while pre-packaged software (low fixed cost) is used by small and large firms alike.
Second, top income and wealth inequality has increased sharply. For example, between
1980 and 2014, the United States experienced 21% growth in the incomes of the bottom
half of the distribution, while the top 10 percent saw their incomes more than double
during the same period (Piketty et al., 2018). Third, since the 1990s, business income—
not wage income—accounts for the largest part of the rise of top incomes in the United
States (Smith et al., 2019, Figure IX).

This paper leaves several important questions for future research. First, in the stylized
model presented, technical change and its direction is exogenous. While this assumption
is reasonable in the case of steam and electric power adoption in the US and the Nether-
lands, modelling technical change as the outcome of a directed research effort could pro-
vide further useful insights. A concentrated firm size distribution may further incentivize
large-scale-biased technical change, similar to how the skill distribution may induce in-
novation in technologies that complement the more abundant factor (Acemoglu, 2002).
Another important simplification of the model is that while technology adoption matters
for inequality, inequality does not matter for technology adoption. In more quantitative
model, with risk aversion or liquidity constraints, entrepreneurship skews towards high
wealth individuals because they are more equipped to take risk or afford larger up-front
investments (Quadrini, 2000; Cagetti and De Nardi, 2006; Buera et al., 2011; Buera and
Shin, 2013). In such a model, large-scale-biased technical change may further reduce en-
try of low-wealth individuals and worsen aggregate productivity. Lastly, the on-going
development of artificial intelligence technologies raises important questions on its dis-
tributional effects. Research shows that large firms tended to be the early adopters of the
technology (McElheran et al., 2023). More research is necessary to understand whether
this will remain the case as these technologies mature.
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A Figures

FIGURE A.1: Capacity of primary power by type in horsepower per 100 employees in
manufacturing in the Netherlands
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Notes: Electricity (purchased) refer to electric motors driven by purchased electricity, only. Sources:
(Blanken and Lintsen, 1981, Table 8) for primary power by type, (Statistics Netherlands, 2001) for em-
ployment in manufacturing.

FIGURE A.2: Marginal cost of steam engines and electric motors of different capacities
relative to its 100-horse power equivalent
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Sources: (Emery, 1883) for coal per horse-power in steam engines; (Bolton, 1926) for full load efficiency of
squirrel-cage induction motor.
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FIGURE A.3: Correlation between income and wealth inequality
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(B) Top 10%
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(C) Top 5%
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(D) Top 1%
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Notes: These figures show the correlation between measured income inequality in 1883 derived from local
income tax data and wealth inequality as measured from wealth of decedents who were assessed for in-
heritance taxation. Each dot is a municipality, and the size of the dot represents the number of individuals
for which we observe wealth in that municipality.
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FIGURE A.4: Coal access by county

Notes: Coal access is defined in equation (16). Sources: US Geological Survey, Coal Resources Data System
for the coal resources by county. Donaldson and Hornbeck (2016) for transportation costs by county-pair.

FIGURE A.5: Potential waterpower in horsepower available 50 percent of the time

Source: US Geological Survey, (Young, 1964, Table 10).
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FIGURE A.6: Correlation between coal access and coal prices
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Sources: coal access: National Coal Resources Data System, US Geological Survey and Donaldson and
Hornbeck (2016) for transportation costs by county-pair; coal prices: Census of Manufactures, 1929.

FIGURE A.7: Correlation between hydropower potential and electricity prices
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Sources: hydropower potential: US Geological Survey, (Young, 1964, Table 10); electricity prices; Census of
Manufactures 1929.
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FIGURE A.8: Correlation between coal access and hydropower potential
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Sources: for hydropower potential: US Geological Survey, (Young, 1964, Table 10); for coal access: US
Geological Survey, Coal Resources Data System.

FIGURE A.9: Heterogeneous effects of coal access across industries
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Notes: This figure shows estimated of the reduced form effects of coal access. Panel A shows the effect
estimated on a subset of industries that adopt any power nationally in 1890 (measured as being above the
25th percentile in share of establishments reporting the use of power). Panel B shows the effect estimated
on “placebo” industries, those below the 25th percentile in terms of power use. Shaded areas represent 95%
confidence intervals. Standard errors are clustered at the state-level.
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FIGURE A.10: Heterogeneous effects of hydropower potential across industries

(A) Adopting industries

Electric motors adopted
→

-.15

-.1

-.05

0

.05

Ef
fe

ct
 o

f h
yd

ro
po

w
er

 p
ot

en
tia

l o
n 

fir
m

 si
ze

 (l
og

-lo
g)

1890 1900 1909 1919 1929 1939

(B) Placebo industries
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Notes: This figure shows estimated of the reduced form effects of hydropower potential on establishment
sizes. Panel A shows the effect estimated on a subset of industries that adopt electric motors nationally
in 1939 (measured as being above the 25th percentile in share of fuel costs that is electric in 1939). Panel
B shows the effect estimated on “placebo” industries, those below the 25th percentile in terms of electric
motor adoption. Shaded areas represent 95% confidence intervals. Standard errors are clustered at the
state-level.

FIGURE A.11: Effects of coal access and hydropower potential on the city-industry level

(A) Coal access
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(B) Hydropower potential
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Notes: Panel A and B of this figure show estimates of the reduced form effects of coal access and hy-
dropower potential on on establishment sizes on the city-industry level. Estimates in Panel A and B are
jointly estimated in one specification (see equation (19) for the econometric specification), the only dif-
ference being the base year relative to which the estimates are estimated. Shaded areas represent 95%
confidence intervals. Standard errors are clustered at the city-level.
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FIGURE A.12: Effects of hydropower potential on the city-industry is mostly through
state-level hydropower

(A) Hydropower potential in the city

Electric motors adopted→

-.1

-.05

0

.05

Ef
fe

ct
 o

f w
ith

in
-c

ity
 h

yd
ro

-p
ot

en
tia

l o
n 

fir
m

 si
ze

 (l
og

-lo
g)

1880 1890 1900 1910 1920 1930 1940

(B) Hydropower potential outside the city
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Notes: Panel A and B of this figure show estimates of the reduced form effects of hydropower potential on
on establishment sizes on the city-industry level. Estimates in Panel A and B are jointly estimated in one
specification where the regression includes both hydropower potential within a 50 mile radius of the city
and hydropower potential within the state outside of a 50 mile radius. Data on hydropower potential by
county is from (Gaggl et al., 2021). Shaded areas represent 95% confidence intervals. Standard errors are
clustered at the city-level.

FIGURE A.13: Free entry condition: correlation between profit-wage ratio and firm size

(A) State-industry level data
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(B) Establishment level-data
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Notes: Panel A and B show binscatters of firm sizes and the ratio between average profits and wages
by industry (each in logs). Each observation is an industry-state-year combination. Average profits are
approximated by dividing total output minus cost of raw materials, labor costs, capital costs, and other
expenses by the number of establishments. Panel A is computed from the newly digitized state-industry
data. There, the wage rate is approximated by dividing total wage costs by total employment. Panel B is
computed from establishment-level data digitized by (Atack and Bateman, 1999), similarly aggregated to
the state-industry level. In these data, the daily wage is directly observed. In both panels, state-industry
pairs are weighted by the number of establishments.
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FIGURE A.14: Effects of coal access and hydropower potential on the profit-wage ratio
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(B) Hydropower potential
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Notes: Panel A and B of this figure show estimates of the reduced form effects of coal access and hy-
dropower potential on the ratio between average profits and average wages relative to the base year,
accounting for industry and state fixed effects. Estimates in Panel A and B are jointly estimated in one
specification (see equation (19) for the econometric specification), the only difference being the base year
relative to which the estimates are estimated. Shaded areas represent 95% confidence intervals. Standard
errors are clustered at the state-level.

FIGURE A.15: Robustness to using weighted wealth inequality measures

(A) Steam power effect
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(B) Electric power effect
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Notes: This figure shows the estimated effects in percentage points of steam power (in panel A) and electric
power adoption (in panel B) on within-municipality top wealth inequality for each decade relative to 1880.
The only difference with 9 is that wealth inequality is computed by weighting individuals by the inverse
probability of death as estimated by their age. The econometric specifications are detailed in equations
(23) and (24). Observations are weighted by the number of individuals on which the inequality measure is
based. Shaded areas represent 95% confidence intervals.

57



FIGURE A.16: Steam power adoption relative to electric power adoption increased
wealth inequality.
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Notes: This figure shows the estimated effects in percentage points of steam power adoption on within-
municipality top wealth inequality for each decade relative to 1880 relative to electric power adoption.
Observations are weighted by the number of individuals on which the inequality measure is based. Shaded
areas represent 95% confidence intervals.
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FIGURE A.17: Steam vs. electric power is most correlated with increased wealth
inequality at the very top
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(B) Top 5% share
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(C) Top 10% share
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(D) Top 25% share
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Notes: This figure shows the estimated effects in percentage points of steam power (in panel A) and electric
power adoption (in panel B) on within-municipality top wealth inequality for each decade relative to 1880.
The econometric specifications are detailed in equations (23) and (24). Observations are weighted by the
number of individuals on which the inequality measure is based. Shaded areas represent 95% confidence
intervals.
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FIGURE A.18: Steam power increased wealth inequality, electric power decreased it (IV)

(A) Steam power effect
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(B) Electric power effect
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Notes: This figure shows the estimated effects in percentage points of pre-industrial exposure to steam
power (in panel A) and electric power adoption (in panel B) on within-municipality top wealth inequality
(top 1% share) for each decade relative to 1880. The instrumental variable is exposure to the respective
technology which is computed on the basis of the local industry composition in 1816 and adoption rates
by industry in 1930. Observations are weighted by the number of individuals on which the inequality
measure is based. Shaded areas represent 95% confidence intervals.

FIGURE A.19: Top 1% wealth share in Enschede, Netherlands
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Notes: This figure shows the share of wealth held by the top 1% of decedents aged 20 and over in Enschede
between 1879 and 1919. For each year, wealth inequality is computed from the sample of decedents in a
10-year window around it.
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B Tables

TABLE B.1: The effect of coal access on steam engine adoption (1890)

Steam hp per worker (asinh) Steam as share of total hp

Coal access (logs) 0.022∗∗∗ 0.022∗∗∗ 0.023∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.035∗∗∗

(0.004) (0.004) (0.004) (0.007) (0.007) (0.007)

Hydro-potential (logs) -0.006∗∗ -0.006∗ -0.007 -0.006
(0.003) (0.003) (0.007) (0.005)

Market access (logs) X X

Observations 4237 4237 4237 3395 3395 3395

Notes: This table shows the effect of coal access (in logs) on steam engine horsepower per employee and as
fraction of total horsepower. The unit of analysis is a state-industry pair. Standard errors in parentheses
are clustered at the state-level. Industry fixed-effects included. * p < 0.10, ** p < 0.05, *** p < 0.01.

TABLE B.2: Little effect of coal access on overall power use (1890)

Water hp per worker (asinh) Total hp per worker (asinh)

Coal access (logs) -0.030∗∗ -0.028∗∗ -0.037∗∗∗ -0.001 -0.001 -0.005
(0.013) (0.013) (0.012) (0.006) (0.006) (0.006)

Hydropower potential (logs) 0.017 0.016∗∗ 0.002 0.002
(0.010) (0.008) (0.006) (0.004)

Market access (logs) X X

Observations 4237 4237 4237 4237 4237 4237

Notes: This table shows the effect of coal access (in logs) on horsepower of adopted water wheels and total

horsepower per employee. Standard errors in parentheses are clustered at the state-level. Industry fixed-

effects included. * p< 0.10, ** p< 0.05, *** p< 0.01.
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TABLE B.3: The effect of hydropower potential on purchased electric energy use (1939)

MWh per worker (asinh) Electricity as share of fuel

Hydro-potential (logs) 0.110∗∗∗ 0.116∗∗∗ 0.120∗∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.029) (0.024) (0.021) (0.004) (0.003) (0.003)

Coal access (logs) 0.022 0.015 -0.007∗∗ -0.005∗

(0.017) (0.017) (0.003) (0.002)

Market access (logs) X X

Observations 5031 5031 5031 5010 5010 5010

Notes: This table shows the effect of hydropower potential (in logs) on megawatt hour of purchased elec-
tricty per employee and as fraction of total horsepower. Standard errors in parentheses are clustered at the
state-level. Industry fixed-effects included. * p < 0.10, ** p < 0.05, *** p < 0.01.

TABLE B.4: The effect of steam power and electric power adoption on firm sizes

∆ ln(firm sizeis)

1860-1890 1900-1940

STEAMis,1890 1.058∗∗ 1.152∗∗ 1.089∗∗

(0.450) (0.465) (0.483)

ELECTRICITYis,1939 -0.386∗∗∗ -0.383∗∗∗ -0.353∗∗∗

(0.094) (0.104) (0.113)

∆ ln(population densitys) X X X X
∆ ln(income/wealth p.c.s) X X

Observations 1900 1900 1900 2117 2117 2117
Kleibergen-Paap F-stat. 42.9 33.4 24.7 16.8 14.1 13.3

Notes: This table shows the estimated effects of steam power and electric power adoption on the change
in log firm size in a given state and industry. The explanatory variables are the inverse hyperbolic sine of
steam engine horse power in 1890 and megawatt-hour of purchased electricity per worker in 1939. The
adoption variables are instrumented with coal access (first three columns) and hydropower potential (last
three columns). Observations are weighted by the number of establishments in the base year. Standard
errors in parentheses are clustered at the state-level.* p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE B.5: The effect of steam power and electric power adoption on the profit-wage
ratio

∆ ln
(

average profitsis
wageis

)
1860-1890 1900-1939

STEAMis,1890 1.134∗∗ 1.297∗∗ 1.020∗

(0.529) (0.533) (0.512)

ELECTRICITYis,1939 -0.543∗∗ -0.524∗∗ -0.474∗

(0.250) (0.250) (0.254)

∆ ln(population densitys) X X X X
∆ ln(income/wealth p.c.s) X X

Observations 1869 1869 1869 1935 1935 1935
Kleibergen-Paap F-stat. 42.8 33.4 24.8 6.6 6.4 5.8

Notes: This table shows the estimated effects of steam power and electric power adoption on the change in
the log profit-wage ratio in a given state and industry. The explanatory variables are the inverse hyperbolic
sine of steam engine horse power in 1890 and megawatt-hour of purchased electricity per worker in 1939.
The adoption variables are instrumented with coal access (first three columns) and hydropower potential
(last three columns). Observations are weighted by the number of establishments in the base year. Standard
errors in parentheses are clustered at the state-level.* p < 0.10, ** p < 0.05, *** p < 0.01.

63



TABLE B.6: Adoption rates by 2-digit ISIC industry in 1930

ISIC Name STEAM1930,i ELEC1930,i Employment

11 Beverages 0.50 0.44 4374
13 Textiles 0.50 0.47 44750
19 Coke and petroleum 0.47 0.42 1129
17 Paper and paper products 0.40 0.57 11000
24 Basic metals 0.35 0.64 6305
23 Other non-metallic mineral products 0.33 0.56 22733
20 Chemicals and chemical products 0.32 0.64 11558
21 Pharmaceuticals 0.29 0.64 1126
22 Rubber and plastics products 0.27 0.71 2540
16 Wood and wood products 0.25 0.40 19081
10 Food products 0.24 0.62 103220
28 Machinery and equipment n.e.c. 0.16 0.82 5313
27 Electrical equipment 0.16 0.84 22380
33 Repair and installation of machinery 0.08 0.89 7030
30 Other transport equipment 0.07 0.87 18723
25 Fabricated metal products 0.07 0.80 34951
15 Leather and related products 0.04 0.40 26855
18 Printing 0.03 0.92 31740
31 Furniture 0.03 0.68 12820
32 Other manufacturing 0.01 0.63 7163
26 Computer and electronic products 0.01 0.32 3748
12 Tobacco products 0.01 0.65 21160
14 Wearing apparel 0.00 0.37 53939

Source: Dutch Census of Companies 1930.

TABLE B.7: First stage: pre-industrial exposure and technology adoption

STEAM1930,m ELECTR1930,m

STEAM EXP1816,m 0.535∗∗∗

(0.061)

ELECTR EXP1816,m 0.497∗∗∗

(0.088)

Constant 0.043∗ 0.254∗∗∗

(0.023) (0.046)

Observations 835 835

Standard errors in parentheses. Observations are weighted by total manufacturing employment in 1930.

* p< 0.10, ** p< 0.05, *** p< 0.01.
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C Model appendix

Proof of Proposition 1. I prove Proposition 1 by proving its elements (a) to (c) sequentially.
Proposition 1(a): Recall that optimal technology adoption implies that the profit gain of
adopting a higher fixed, lower marginal, cost relative to a lower fixed, higher marginal
cost technology is increasing in productivity ψ. Formally, ∆πjk(ψ) (defined in equation
(6)) is strictly increasing in ψ if κj > κk and αj < αk. This implies that the least pro-
ductive entrepreneur uses technology with the highest marginal and lowest fixed cost
of all adopted technologies. Also, the least productive entrepreneur has productivity ψ

equal to the lowest zero-profit cut-off of all available technologies, minj∈1,2,..,J ψ̄j. From
equation (8), technology tj is the lowest zero-profit cut-off technology if and only if

αjκ
1

σ−1
j = min

k∈{1,2,..,J}

{
αkκ

1
σ−1
k

}
.

The marginal entrepreneur is indifferent between any two technologies tj and tk such
that ψ̄j = ψ̄k = ψ̄ as they both give them zero-profit. But since ∆πjk(ψ) in (6) is strictly in-
creasing, any entrepreneur with ψ > ψ̄ would strictly prefer the technology with higher
fixed cost and lower marginal cost. Therefore, out of any technology tj that minimizes
ψ̄j, only the technology with lowest marginal cost is adopted (in the sense of having a
strictly positive probability measure of entrepreneurs adopting the technology).
Proposition 1(b): Note that ∆πjk(ψ) → ∞ in (6) as ψ → ∞ if and only if αj < αk. This
means that if the marginal cost of a technology is lower than that of any another, there
exists a productivity level high enough such that it is profitable to adopt this technology.
The assumption that the productivity distribution has semi-infinite support implies that
for any C > 0, Pr(ψ > C) > 0. Therefore, there always exists a strictly positive share
of households that adopt the technology with lowest marginal cost. Note that is true
regardless of the fixed cost. Of course, in case there is more than one technology that
minimizes marginal cost, the technology with lowest fixed costs amongst those will be
adopted. Since no technology can be adopted that is trivially dominated, this must also
be the adopted technology with highest fixed cost.
Proposition 1(c): A technology tj with fixed cost κj such that κ∗1 < κj < κ∗J∗ is adopted if
and only if there exists a ψ > ψm for which it 1) dominates all technologies with lower
fixed costs, 2) dominates all technologies with higher fixed cost, and 3) yields positive
profits. Note that condition is 3) is redundant given condition 1) since it can only domi-
nate technology t∗1 if ψ > ψ̄ and t∗1 yields positive profits for all ψ > ψ̄. Also, recall that
technologies in T are arranged in order of increasing fixed costs (κ1 < .. < κJ) and thus
decreasing marginal costs (α1 > .. > αJ). Therefore, technology tj is adopted if there
exists a ψ > ψm such that ∆πjk(ψ) > 0 for all k ∈ {1, .., j − 1} and ∆πjl(ψ) > 0 for all
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l ∈ {j + 1, .., J}. Using equation (6), this yields the following two restrictions:

Y
σ
(ρψ)σ−1 >

κj − κk

α1−σ
j − α1−σ

k

for all k ∈ {1, .., j − 1} and; (27a)

Y
σ
(ρψ)σ−1 <

κl − κj

α1−σ
l − α1−σ

j

for all l ∈ {j + 1, .., J} (27b)

Hence, for (27a) and (27b) to hold for some ψ > ψ̄, it is necessary and sufficient that the
lower bound in (27a) is strictly lower than the upper bound in (27b). Thus, technology j
is adopted if and only if for all k ∈ {1, .., j − 1} and l ∈ {j + 1, .., J}

α1−σ
l − α1−σ

j

α1−σ
j − α1−σ

k

<
κl − κj

κj − κk
.

Proposition 2 (Closed-form equilibrium). Suppose that the distribution of productivity
ψ is Pareto with shape parameter ξ and a minimum productivity level of ψm > 0 such
that ξ > 1 and ξ > σ − 1. Then, the competitive equilibrium is given in closed-form by

L =
ξ

1 + ξ
(28)

ψ̄ = B̄(ξ, σ, ψm)
(

κ̄
σ−2
σ−1 α∗1(κ

∗
1)

1
σ−1

) σ−1
Ā(ξ,σ) (29)

Y = C̄(ξ, σ, ψm)

(
κ̄

1
ξ

α∗1(κ
∗
1)

1
σ−1

) ξ(σ−1)
Ā(ξ,σ)

(30)

C =
ξσ − ξ + σ − 1

ξσ
Y (31)

w = ρ
1 + ξ

ξ
Y (32)

π̄ =
σ − 1

ξ − σ + 1
κ̄ (33)

where Ā(ξ, σ), B̄(ξ, σ, ψm), and C̄(ξ, σ, ψm) are strictly positive functions of the exogenous (non-
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technological) parameters ξ, σ, and ψm:

Ā(ξ, σ) ≡ (1 + ξ)(σ − 1)− ξ

B̄(ξ, σ, ψm) ≡

ψ
ξ
m (1 + ξ)

1
σ−1

σ

ξ − σ + 1

(
ξψ

ξ
m

ξ − σ + 1

) 1
1−σ


σ−1

Ā(ξ,σ)

C̄(ξ, σ, ψm) ≡ B̄(ξ, σ, ψm)
−ξ ψ

ξ
mξσ

ξ − σ + 1
1

1 + ξ

and κ̄ is the average fixed cost of all producing entrepreneurs:

κ̄ =


κ∗1 if J∗ = 1

κ∗1 +
(

α∗1 (κ
∗
1)

1
σ−1
)ξ

∑J∗
j=2

(
(α∗j )

1−σ − (α∗j−1)
1−σ
) ξ

σ−1
(

κ∗j − κ∗j−1

) σ−1−ξ
σ−1 if J∗ > 1.

Proof of Proposition 2. We first derive the adopting set Ψ∗
j for each technology t∗j ∈ T∗.

Note that we can restrict ourselves to technologies that are adopted in equilibrium (see
Proposition 1), since the adopting set is empty otherwise.

By definition, if T∗ is a singleton set, then Ψ∗
1 is [ψ̄, ∞). Now suppose J∗ ≡ |T∗| >

1. From equation (6), it follows that an entrepreneur with productivity ψ is indifferent
between adopting t∗j and t∗j+1 if and only if G(ψ, t∗j+1, t∗j ) = 0. Define ψ̄j,j+1 implicitly by

G(ψ, t∗j+1, t∗j ) = 0

which implies that

ψ̄j,j+1 =

(
κ∗j+1 − κ∗j

(α∗j+1)
1−σ − (α∗j )

1−σ

) 1
σ−1 ( σ

Y

) 1
σ−1 w

ρ
= ψ̄

(
κ∗j+1−κ∗j(

α∗j+1

)1−σ
−
(

α∗j

)1−σ

) 1
σ−1

α∗1(κ
∗
1)

1
σ−1

. (34)

Since G(ψ, t∗j+1, t∗j ) is increasing in ψ (see proof of Proposition 1(a)), the more produc-
tive entrepreneur chooses the technology that entails higher fixed cost. Specifically, an
entrepreneur would choose t∗j+1 over t∗j if and only if ψ > ψ̄j,j+1. This means that all
entrepreneurs with productivity between ψ̄ and ψ̄1,2 choose t∗1 , all entrepreneurs with
productivity between ψ̄1,2 and ψ̄2,3 choose t∗2 , and so on and so forth. Formally,

Ψ∗
j = [ψ̄, ψ̄j,j+1] if j = 1

Ψ∗
j = [ψ̄j−1,j, ψ̄j,j+1] if 1 < j < J∗

Ψ∗
j = [ψ̄j−1,j, ∞) if j = J∗
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Combining equation (8) (definition of ψ̄) and equation (11) (labor market clearing) with
the Pareto assumption, the probability of being an entrepreneur conditional on entry is

1 − F(ψ̄) = ψ
ξ
mψ̄−ξ =

L
1 − L

ξ − σ + 1
ξ(σ − 1)

w
κ̄

(35)

where κ̄, the average fixed cost across producing entrepreneurs, is

κ̄ = κ1 +
(

α∗1 (κ
∗
1)

1
σ−1
)ξ J∗

∑
j=2

(
(α∗j )

1−σ − (α∗j−1)
1−σ
) ξ

σ−1
(

κ∗j − κ∗j−1

) σ−1−ξ
σ−1 .

Also, labor market clearing in (11) combined with the aggregate price equation in (13),
implies that the labor share is constant and independent of technology:

Lw
Y

= ρ. (36)

Combining the constant labor share with equation (35), shows that the share of output
devoted to the fixed costs is constant and independent of technology:

(1 − L)ψξ
mψ̄−ξ κ̄

Y
=

ξ − σ + 1
ξσ

. (37)

Then, by goods market clearing, the profit share must be constant too:

(1 − L)ψξ
mψ̄−ξπ̄

Y
= 1 − ρ − ξ − σ + 1

ξσ
=

ρ

ξ
. (38)

Equation (39) also implies that consumption is a fixed share of output, as in equation (31):

C =
ξσ − ξ + σ − 1

ξσ
Y. (39)

Together with the free entry condition in equation (9) and the labor share in equation (36),
the constant profit share implies that the share of entrants is constant and independent
of technology too:

L =
ξ

1 + ξ
. (40)

Lastly, the pricing equation in (13) combined with the Pareto distribution yields

(
w
ρ

)σ−1

= (1 − L)

(
ξψ

ξ
m

ξ − σ + 1

)
ψ̄σ−1−ξ κ̄

(α∗1)
σ−1κ∗1

(41)

Equations (35), (36), (40), (41) together lead to the closed-form solutions for L, ψ̄, Y, and w
in equations (28), (29), (30), and (32), respectively. Lastly, the solution for π̄, the average
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profits, in (33) results from equations (39) and (38).

Lemma 1. Suppose that the assumptions in Proposition 2 (Pareto distribution) hold and
that σ > 2. Then, if a new technology tnew is added to the technology set T and it is
adopted in equilibrium, it increases output Y, wages w, and total profits (1 − L)ψξ

mψ̄−ξπ̄.

Proof of Lemma 1. Suppose towards contradiction that output Y does not increase. Since
Y and wages w are positively linearly related (equation (32)), the profit function can be
rewritten as

πj(ψ) =
1
σ

(
ξ

1 + ξ

)σ−1

Y2−σ

(
ψ

αj

)σ−1

− κj. (42)

Given σ > 2, if Y does not increase, it means that profits can not go down for any produc-
tivity level and for any technology choice. Also, given that the technology is adopted, it
must yield strictly higher profits for some entrepreneurs. Therefore, total profits must go
up. But by equation (38), profits are a fixed share of output. Hence, the increase in total
profits implies that output Y increases, a contradiction. Therefore, output must increase
in response to a new technology that is adopted. Since output, wages, and total profits
are positively and linearly related, wages and total profits must also go up in response to
an adopted new technology.

Proof of Proposition 3. I prove Proposition 3 by proving its elements (a) and (b) sequen-
tially.
Proposition 3(a): If tnew is adopted and has the highest fixed cost, it must have low-
est marginal cost. By the reasoning in Stage 3 (equation (6)), this technology is only
adopted by the entrepreneurs above a certain threshold for ψ. The entrepreneurs above
this threshold reduce their marginal cost and thus increase their total factor productivity.

Because it becomes the highest fixed cost technology, the average fixed cost among
producing entrepreneurs, κ̄, increases.49 Since κ̄ increases, the entry threshold ψ̄ in-
creases too (seen from equation (29)). Hence, the technical change would lead some
entrepreneurs to no longer produce, i.e., decreasing their total factor productivity to 0.
It also means that the thresholds above which an entrepreneur uses technology j + 1
instead of j increase for each j (see equation (34)): at least some entrepreneurs that do
not adopt the new technology “downgrade” their technology, because the increased total
output (see Lemma 1) by those using the new technology reduces their demand. Hence,
for all entrepreneurs that do not adopt the new technology, the marginal cost either de-
creases or remains unchanged. This proves that technical change is large-scale-biased if
the new technology has higher fixed than any other adopted technology.

49To see this formally, note that output increases by Lemma 1. By equation (30), if output increases while

the entry technology, i.e. α∗1(κ
∗
1)

1
σ−1 remains unchanged, κ̄ must increase.
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Now suppose the new technology does not have highest fixed cost of all adopted
technologies. Then, entrepreneurs that previously adopted the technology with lowest
marginal cost can not decrease their marginal cost. For any k > ψm, there exists a subset
of entrepreneurs with ψ > k that adopts the technology with lowest marginal cost before
and after the technical change. Hence, there does not exist a k such that all entrepreneurs
with ψ > k strictly increase total factor productivity, so that the technical change can not
be large-scale-biased, which proves that technical change can be large-scale-biased only if
the new technology has higher fixed than any other adopted technology.

Proposition 3(b): If tnew is adopted and has the lowest fixed cost, it must have highest
marginal cost. First, the entry threshold ψ̄ in equation (29) decreases because both κ∗1
(the fixed cost of the lowest adopted fixed-cost technology) and κ̄ decrease. Therefore,
there exists a range of entrepreneurial productivities [ψ̄new, ψ̄old] such that entrepreneurs
within that range exited before the technical change and enter after. Therefore, these
entrepreneurs increase their total factor productivity from 0 to a strictly positive value.
For any ψ > ψold, none chooses a technology that has lower marginal cost than before the
technical change, because the increased total output (see Lemma 1) reduces their demand
for any given price. Hence, some entrepreneurs with ψ > ψold “downgrade” their tech-
nology relative to before the technical change and others do not change their adoption
choice. This proves that technical change is small-scale-biased if the new technology has
lower fixed than any other adopted technology.

Now suppose the new technology does not have lowest fixed cost of all adopted tech-
nologies. By Lemma 1, output and wages increase as a result of the technical change.
Also, output and wages are positively linearly related (equation (32)). Thus, if out-
put goes up while the entry technology remains unchanged, ψ̄ must increase by equa-
tion (8). That is, ψ̄(Tnew) > ψ̄(Told). This means the range of entrepreneurs with ψ ∈
(ψ̄(Told), ψ̄(Tnew)) see their TFP decrease. Hence, such technical change can not be small-
scale-biased, which proves that technical change can be small-scale-biased only if the new
technology has lower fixed than any other adopted technology.

Proposition 3A (Scale-biased technical change with obsolescence). Suppose that the
assumptions in Proposition 2 (Pareto distribution) hold, that σ > 2 and that T∗

new =

T̃old ∪ {tnew} where T̃old ⊂ T∗
old (the new technology makes at least of one of the previ-

ously adopted technologies obsolete), then

(a) the technical change is large-scale-biased if and only if the conditions a.1 and either
a.2 or a.3 are satisfied:

(a.1) αnew < min{αj,κj}∈T∗
old

αj

(a.2) αnewκ
1

σ−1
new > min{αj,κj}∈T∗

old
αjκ

1
σ−1
j
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(a.3) αnewκ
1

σ−1
new ≤ min{αj,κj}∈T∗

old
αjκ

1
σ−1
j and αnewκnew > min{αj,κj}∈T∗

old

[
αjκ

1
σ−1
j

]
κ̄old

(b) the technical change is small-scale-biased if and only if the conditions b.1, b.2, and
b.3 are satisfied:

(b.1) αnew ≥ min{αj,κj}∈T∗
old

αj

(b.2) αnewκ
1

σ−1
new < min{αj,κj}∈T∗

old
αjκ

1
σ−1
j

(b.3) αnewκ
1

σ−1
new κ̄new ≤ min{αj,κj}∈T∗

old
αjκ

1
σ−1
j κ̄old

Proof of Proposition 3A. I prove Proposition 3A by proving its elements (a) and (b) sequen-
tially.
Proposition 3A(a): If the new technology satisfies a.1 it is the technology with lowest
marginal cost. Therefore, it is adopted by all entrepreneurs above a certain threshold
of productivity. This range of entrepreneurs would see TFP increase. If a.2 is true (be-
sides a.1), it means the new technology does not become the entry technology. From
there, the same reasoning as in the proof of Proposition 3(a), proves that the technical
change is large-scale-biased. If a.3 is true (besides a.1), the new technology becomes the
only technology that is adopted in equilibrium by Proposition 1 and the entry threshold
increases by Proposition 2. Therefore, every entrepreneur with productivity above the
new entry threshold increases TFP, while those below the threshold lose out. That is,
ψ̄(Tnew) > ψ̄(Told). This means the range of entrepreneurs with ψ ∈ (ψ̄(Told), ψ̄(Tnew))

see their TFP decrease, while those with ψ > ψ̄(Tnew) see their TFP increase. This proves
that technical change is large-scale-biased if the conditions a.1 and either a.2 or a.3 are
satisfied.

To prove that technical change is large-scale-biased only if the conditions a.1 and ei-
ther a.2 or a.3 are satisfied, now suppose technical change is large-scale-biased. By defini-
tion, the new technology increases TFP for all entrepreneurs above a certain productivity
threshold k > min{ψ̄(Tnew), ψ̄(Told)}. Therefore, the marginal cost of the new technology
must be lower than any previously adopted technology, such that a.1 is satisfied. Also,
by definition of large-scale bias, TFP does not increase for all entrepreneurs with ψ < k.
Therefore, if the new technology becomes the only technology that is adopted in equilib-
rium (such that a.2 is not satisfied), it must be that the entry threshold increases, hence a.3
is satisfied. This proves that technical change is large-scale-biased only if the conditions
a.1 and either a.2 or a.3 are satisfied.

Proposition 3A(b): Suppose conditions b.1, b.2, and b.3 are satisfied. Then, because
the new technology does not have the lowest marginal cost (b.1), it is not adopted by the
most productive entrepreneurs. Because b.2 is satisfied, it is adopted by the least produc-
tive entrepreneurs. Because b.3 is satisfied, it reduces the entry threshold (by Proposition
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2). Therefore, it increases TFP for a range of entrepreneurs that did not enter before the
technical change. If it increases TFP for some ψ′ > ψ̄old, it also increases TFP for any
ψ̄new > ψ′′ > ψ′ > ψ̄old. This can be seen by realizing that the new technology can only
increase TFP for ψ′ if it is adopted by ψ′, in which case it must also be adopted by any
entrepreneur with lower productivity (since it is adopted by the marginal entrepreneur).
Also, because it is not adopted by the most productive entrepreneurs, there is a produc-
tivity threshold above which the new technology is not adopted and therefore does not
increase TFP. This proves that technical change is small-scale-biased if the conditions
b.1, b.2, and b.3 are satisfied. This proves that technical change is large-scale-biased only
if the conditions b.1, b.2, and b.3 are satisfied.

Now suppose technical change is small-scale-biased. Since there exists a productivity
threshold above which the technical change does not increase TFP, its marginal cost must
not be lower than the lowest marginal cost of any existing technology (b.1). Also, since
there exists a productivity threshold below which it increases TFP, it must be adopted
by the marginal entrepreneur (so that b.2 is satisfied by Proposition 1). Lastly, again since
there exists a productivity threshold below which it increases TFP, it cannot increase the
entry threshold (so that b.3 must be satisfied by Proposition 2).

Proof of Proposition 4. I prove Proposition 4 by proving its elements (a), (b), and (c) se-
quentially.
Proposition 4(a): If technical change is large-scale-biased, it increases average fixed cost:
κ̄new > κ̄old (see the proof of Proposition 3(a)). Since it increases the average fixed cost
without affecting α∗1(κ

∗
1)

1
σ−1 , it increases ψ̄ by equation (29). The average employment

by firm is the number of workers divided by the number of entrepreneurs. The number
of workers L is constant in equilibrium by equation (28). The number of entrepreneurs
is (1 − L) (1 − F(ψ̄)) which is decreasing in ψ̄. Therefore, the average employment size
increases in response to large-scale-biased technical change.

If technical change is small-scale-biased the entry threshold ψ̄ in equation (29) de-
creases because both κ∗1 (the fixed cost of the lowest adopted fixed-cost technology) and
κ̄ decrease. Therefore, the average employment size decreases in response to large-scale-
biased technical change.
Proposition 4(b): By Proposition Proposition 4(a), if technical change is large-scale bi-
ased, it increases ψ̄. Thus, by the free-entry condition in equation (9), it increases the
ratio between average profits of producting entrepreneurs and wages. The opposite is
true for small-scale-biased technical change.
Proposition 4(c): Any entrepreneur that does not adopt the technology, sees a reduction
in profits as a result of technical change. This can be seen by noting that equation (42) is
decreasing in output Y and output increases when a new technology is added by Lemma
1. If technical change is small-scale-biased, entrepreneurs above a certain productivity
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threshold do not adopt the technology and their profits must therefore decline. How-
ever, total output and wages go up. Hence, there exists a k̄ ∈ (0, 100) such that average
income growth of the top k% of incomes is lower than average income growth of the
bottom (100 − k)% of incomes for all k < k̄.

If technical change is large-scale-biased, it increases profits of entrepreneurs above
a certain productivity threshold, while it decreases profit for those below it. Because
the profit share of output is constant (see equation (38)) and wages are a linear func-
tion of output (32), total profit growth equates wage growth. Because only adopting
entrepreneurs experience a profit increase, while other entrepreneurs’ profit decline, their
income growth must exceed wage growth. Furthermore, even among adopting entrepreneurs,
proportional profit growth is increasing in ψ. Therefore, there exists a k̄ ∈ (0, 100) such
that average income growth of the top k% of incomes is higher than average income
growth of the bottom (100 − k)% of incomes for all k < k̄.
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D Data appendix

D.1 Examples of source files

FIGURE D.1: Example of a source image of the Dutch inheritance tax files.

Notes: This form shows the first page of the estate tax form. I extracted information within the yellow
rectangular on the name of the decedents, their place of residence and death, and the date of death. I
detected and extracted the relevant part of the image using a self-trained object detection algorithm. The
template form was consistent nationally and over time between 1879 and 1927. Source: Noord-Hollands
Archief (provincial archive), record group 178, inventory number 2884, image 403.
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FIGURE D.2: Example of a source image of the Dutch inheritance tax files.

Notes: This form shows the second page of the estate tax form. I extracted information within the yellow
rectangular on the assets, liabilities, and net worth of the decedent. I detected and extracted the relevant
part of the image using a self-trained object detection algorithm. The template form was consistent nation-
ally and over time between 1879 and 1927. Source: Noord-Hollands Archief (provincial archive), record
group 178, inventory number 2884, image 404.
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FIGURE D.3: Example of a source image of the Dutch inheritance tax files.

Notes: This image shows an example of another type of document included in the inheritance tax files that
I do not use in the analysis. I filtered out these documents using a self-trained object detection algorithm.
Source: Noord-Hollands Archief (provincial archive), record group 178, inventory number 2884, image 405.
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FIGURE D.4: Example of a source image of the 1930 Census of Companies by
municipality

Notes: The example is for Amsterdam. The data contains the broad and detailed industry classification
(columns 1 and 2), the number of establishments and workers by size (columns 15-21), and information on
power adoption (columns 24-28). Source: (Statistics Netherlands, 2010).
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FIGURE D.5: Example of a source image of the tables of decedents’ and their wealth

Notes: The image is an example of the tables containing names of and information on decedents that I
digitized for Enschede. The data contain information such as names (columns 3 and 4), occupation (column
5), residence (column 6), and, importantly, wealth (column 10). The original source of the wealth data are
the inheritance tax records that I digitized on a large scale. Source: Collectie Overijssel (provincial archive),
record group 0136.4, inventory number 644, image 70.
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D.2 Income distribution by Dutch municipality (1883)

The main source of the data reports the income distribution of 79 municipalities. I added
data on the income distribution for 8 large municipalities with an income tax. The data
for each additional cities derives from the same source as the other 79 municipalities.
Table D.1 documents the relevant year that the income distribution was measured and
the source of the data.

TABLE D.1: Sources of income distribution data for 8 additional cities

City Year Archive Source

Breda 1881 Stadsarchief Breda Municipal year report (“Gemeenteverslag”) 1880
Delft 1893 Stadsarchief Delft Municipal year report (“Gemeenteverslag”) 1893
Eindhoven 1885 RHC Eindhoven Original assessment lists, archive number 10246.925
Enschede 1880 Stadsarchief Enschede Original assessment lists, archive number 1.1226
Hilversum 1880 Archive Prof. Van Zanden Original assessment lists
Nijmegen 1880 Regionaal Archief Nijmegen Overview by income class, archive number 2.14167
Utrecht 1888 Utrechts Archief Municipal year report (“Gemeenteverslag”) 1900
Vlissingen 1883 Zeeuws Archief Original assessment lists, available here.

D.3 Matching the inheritance tax records to the civil registry

I first download all deaths recorded between 1879 and 1927 in the civil registry databases
from five regional archives, each covering the near-universe of deaths in their province:
Brabants Historich Informatie Centrum (Noord-Brabant), Collectie Overijssel (Overijs-
sel), Gelders Archief (Gelderland), Noord-Hollands Archief (Noord-Holland), and Zeeuws
Archief (Zeeland). These datasets contain high quality hand-collected information on
each deaths. While the type of information that was digitized varies somewhat by archive,
each archive has digitized the name(s) of the decedent and their parents, the date of
death, the sex, and the place of death. In all cases except Noord-Brabant, the age at death
was also collected. Amsterdam is the only place in the regions covered for which dig-
itized records of the civil death registry are not available. To maximize the amount of
information available for each person that appears in the death records, I also link the
civil death records to the civil marriage and birth records.

The inheritance tax records were ordered by place and date of death. I use this to
narrow down the possible matches in the civil registry data for each person in the inher-
itance tax data. In record linking terminology, I use the relevant image set as defined by
the place and date of death as blocking variables for the linking between the inheritance tax
records and the civil registry data. This generates for each individual in the inheritance
tax records, a set of possible matches from the civil registry.

From the set of available matches, I choose the most appropriate match (if any) by
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using a heuristic multi-stage matching algorithm. The algorithm takes into account in-
formation on the name and date of death.
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E Details on steam engines and electric motor costs

In this section, I explain in detail the sources, assumptions and computations underlying
the average and marginal cost curves of steam engines and electric motors shown in
Figures 4 and A.2. The underlying data for steam engines, taken directly from (Emery,
1883), are displayed in Table E.1. The data for electric motors, from (Bolton, 1926), are
displayed in Table E.2. I take these to be a full description of the costs.

TABLE E.1: Cost parameters (in $, 1874) of steam engines of different capacities

Purchase costs Yearly operating costs ($)

hp Price ($) Life (yrs) Engineer Firemen Oil, etc. Repairs Coal

5 645 30 540.75 61.80 40.17 226.64
10 988 30 540.75 77.25 49.44 412.44
15 1487 30 618.00 83.43 52.53 568.33
20 1981 30 618.00 92.70 67.98 647.14
25 2441 30 695.25 101.90 83.43 752.41
50 5331 30 618.00 432.60 111.24 135.96 1202.82

100 9207 30 695.25 463.50 123.60 237.93 1898.28
150 13046 30 772.50 463.50 145.23 309.00 2718.00
200 16785 30 772.50 463.50 169.95 383.16 3603.86
250 20426 30 849.75 463.50 200.85 454.23 4504.68
300 23899 30 927.00 463.50 247.20 525.30 5406.08
400 29958 30 927.00 695.25 293.55 679.80 7207.72
500 36220 30 927.00 927.00 355.35 886.83 9009.94

Source: (Emery, 1883, p. 430).

Both the coal and electricity input costs are based on the assumption that the en-
gine/motor is run at capacity 309 days per year, 10 days per hour. For steam engines,
coal input data comes directly from (Emery, 1883). For electric motors, I computed
the cost using electricity prices. For example, running a 1 horsepower electric motor
at full capacity for 309 × 10 hours requires 3090 horsepower-hour, which corresponds
to 0.7457 × 3090 ≈ 2304 kWh. The price of electricity per kWh in the UK in 1925 was
£0.00687.

From the data in Tables E.1 and E.2, I compute the annualized cost of purchase and
renewal using the sinking fund formula:

Annualized purchase cost = Price × r
(1 + r)Life − 1

. (43)

I set the interest rate r equal to 0.05. Then, for example, the annualized cost of renewal
of a 5 horsepower steam engines every 30 years becomes $9.71. In other words, with an
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TABLE E.2: Cost (in £, 1925) of electric motors (squirrel-cage induction motors) of
different capacities

Purchase costs Electricity input

hp Efficiency Price (£) Life (yrs) kWh £

1 0.770 12.90 15 2304 15.83
2 0.787 14.50 16 4608 31.66
3 0.800 16.20 17 6913 47.49
5 0.820 22.20 18 11521 79.15

7.5 0.833 26.80 18 17282 118.72
10 0.840 31.50 19 23042 158.30
15 0.853 39.25 19 34563 237.45
20 0.860 46.20 20 46084 316.60
25 0.870 52.80 20 57605 395.75
30 0.875 58.80 20 69126 474.90
40 0.885 69.90 20 92169 633.20
50 0.890 81.25 20 115211 791.50
60 0.900 92.00 20 138253 949.80
80 0.910 110.50 20 184337 1266.40

100 0.915 132.20 20 230421 1582.99

Notes: The price of electricity per kWh in 1925 was £0.00687 (Hannah, 1979). Source of all other data: (Bolton,
1926, p. 344).

interest rate of 5 percent, a deposit of $9.71 each year would yield $645 every 30 years.
From there, the total annual costs per horsepower per year are calculated as the sum of
the annualized purchase costs and the yearly operating costs. Figure 4 illustrates the data
on cost per horsepower per year tabulated in Table E.3.
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TABLE E.3: Total and per horsepower annualized cost of purchase, renewal,
maintenance and operation (including and excluding of fuel) of a steam engine and

electric motor of different sizes at capacity for 309 days, 10 days per hour.

Steam engines (in 1874 $) Electric motors (in 1925 £)

Excl. fuel Incl. fuel Excl. fuel Incl. fuel

hp Total Per hp Total Per hp Total Per hp Total Per hp

1 0.60 0.78 16 21
2 0.61 0.39 32 21
3 0.63 0.26 48 20
5 652 130 879 176 0.79 0.19 80 19

7.5 0.95 0.15 120 19
10 682 68 1095 109 1.03 0.12 159 19
15 776 52 1345 90 1.29 0.10 239 19
20 808 40 1456 73 1.40 0.08 318 18
25 917 37 1670 67 1.60 0.07 397 18
30 1.78 0.07 477 18
40 2.11 0.06 635 18
50 1378 28 2581 52 2.46 0.06 794 18
60 2.78 0.05 953 18
80 3.34 0.05 1270 17

100 1659 17 3557 36 4.00 0.04 1587 17
150 1887 13 4605 31
200 2042 10 5646 28
250 2276 9 6780 27
300 2523 8 7929 26
400 3047 8 10254 26
500 3641 7 12651 25

Notes: To compute the cost per horsepower per year for electric motors, an efficiency loss relative to capac-
ity that varies across sizes is taken into account (see Table E.2).
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