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Abstract

Artificial intelligence is transforming the task content of work. Predict-
ing the labor market consequences requires understanding how workers’
skills determine productivity across tasks, how workers adapt by chang-
ing occupations and acquiring new skills, and how wages adjust in general
equilibrium. We introduce a dynamic task-based model in which workers
accumulate multidimensional skills that shape their comparative advan-
tage across tasks and, in turn, their occupational choices. We then develop
an estimation strategy that recovers (i) the mapping from skills to task-
level productivity, (ii) the law of motion for skill accumulation, and (iii)
the determinants of occupational choice. We use the quantified model to
study generative Al's impact through task augmentation, automation, and
simplification. We predict long-run average wage gains of 24 percent and
a substantial reduction in wage inequality. The distributional effects arise
almost entirely due to task simplification—the degree to which Al reduces
the skill level required to perform tasks. We show that Al’s labor market
effects critically hinge on its technological scope by contrasting generative
Al with physically-capable Al robots.
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1 Introduction

Technological change alters the tasks performed in production and the returns
to the skills that determine workers’ productivity in those tasks. Turning infor-
mation on how workers’ tasks change into quantitative predictions about the
labor market requires an understanding of (i) how skills map into productiv-
ity across tasks (and thus govern workers’ comparative advantage), (ii) how
workers build those skills over their careers, and (iii) how prices, wages, and
workers” occupational choices adjust in general equilibrium. This paper de-
velops and estimates a dynamic task-based labor market model that allows re-
searchers to estimate the effects of any task-specific technical change—observed
or counterfactual—on individual workers and the overall labor market. We ap-

ply this methodology to study the labor market effects of artificial intelligence.

Our model captures key features necessary to understand the labor market
effects of task-specific technical change. Workers have multidimensional skills.
Their productivity in a given task follows from the match between these skills
and the task’s skill requirements. Workers learn on the job at a rate that depends
on their occupation and their ability to learn. Each period, they choose from
a menu of occupations, each consisting of a set of tasks. These occupational
choices are forward-looking as workers internalize that their skill accumulation
depends on those choices. In equilibrium, demand for each occupation’s output
equals the amount produced by workers choosing that occupation.

We model technical change as the augmentation, automation, and simplifi-
cation of tasks. Augmentation increases human productivity in tasks. Automa-
tion expands the set of tasks that can be performed without human input. Both
are standard features of task-based models (e.g., Acemoglu and Autor, 2011;
Acemoglu and Restrepo, 2018). Beyond those standard forces, we also consider
that technology can reduce the level of skill required to complete a task. We
refer to this as simplification. Together, the three channels determine how each
worker’s productivity is affected by technical change.

To illustrate the need for this framework, consider radiologists, an occupa-
tion where Al is reshaping tasks in multiple ways: Al can assist with detection
of abnormalities, automate screening procedures, and simplify report genera-
tion (e.g., Hosny et al., 2018; Eloundou et al., 2024; Mousa, 2025). How do these
shifts in task composition affect radiologists? Do their skills become more or
less valuable in the era of AI? Could they transition to related medical spe-



cialties if necessary? If retraining is required, at what pace can workers accu-
mulate new skills? Without answering such questions—jointly and in general

equilibrium—one cannot predict how workers will be impacted by Al

To quantify how task-specific technical change affects workers using our
model, we develop a strategy to identify how workers’ skills determine abso-
lute and comparative advantage across tasks and how skills accumulate. Work-
ers’ optimal time allocation yields a closed-form mapping between task-level
productivity and occupational productivity (and observed wages). Combining
this mapping with detailed data on skill requirements, we can recover task-
level productivity from data on workers’ skills, occupations, and wages. While
we only observe skills at labor market entry, we identify skill accumulation

from workers” occupational history and the evolution of their wages.

We estimate the model parameters by maximum likelihood using data from
the National Longitudinal Survey of Youth 1979 (NLSY79). Our procedure is
computationally efficient because it exploits that many parameters can be ei-
ther estimated by linear regression or be obtained with a fast iterative routine
conditional on the remaining parameters, substantially reducing the dimension
of the parameter space that must be searched non-linearly. In our quantitative
application, workers’ skills are five-dimensional: manual, social, math, tech-
nical, and verbal.! In addition, workers differ in their “ability to learn”, that
is, the rate at which they accumulate skills. Following Heckman et al. (1998),
we estimate learning ability separately by quartiles of the AFQT score distribu-

tion.2

Having estimated its parameters, we provide algorithms to solve for the
model’s equilibrium prices in the steady state and over the transition path.
We do so by simulating workers” choices and skill accumulation and updat-
ing prices iteratively to equate demand and supply. We show how the solution
to the worker’s problem can be computed efficiently. Since the worker’s state
space is large, these procedures are nonetheless computationally costly. It is
therefore a large computational advantage that our estimation strategy does

not require solving for the equilibrium.

Our quantified model offers a laboratory to to study how any counterfactual

1We define and measure these skills in the NLSY79 similar to (Addison et al., 2020; Baley
etal., 2022). Relative to these papers, we add manual skills as we believe that to be an important
dimension for our Al counterfactual.

2 AFQT stands for the Armed Forces Qualification Test: a measure of ability used by the US
military to determine enlistment eligibility.



task-specific technical change affects the labor market.> The model predicts
how technologies change workers” comparative advantage, how workers real-

locate and retrain, and how prices adjust in general equilibrium.

The case of artificial intelligence. We apply the quantified model to predict
how AI will affect individual workers and the labor market as a whole. We
follow Eloundou et al. (2024); Eisfeldt et al. (2023) in using large language mod-
els (LLMs) to obtain estimates of Al’s capability to augment, automate, and
simplify tasks. Our prompts closely follow the survey design used to collect as-
sessments from human experts, while enabling hundreds of thousands of eval-
uations. We provide evidence that these LLM-generated estimates are reason-
able, including validation against human expert assessments and experimental

evidence.

Our first key finding is that generative Al yields large wage gains, espe-
cially at the bottom of the distribution. The model predicts an average wage
gain of 24%. However, the average masks large differences across the distribu-
tion. The bottom 50% increases by over 40% while the wage gains of the top
percentiles are close to zero. Simplification drives this distributional effect. Au-
tomation and augmentation, on the other hand, yield positive effects that are

quite broadly shared across the population.

Second, we find that the introduction of Al generates sizable ex-ante welfare
gains for almost all workers at labor market entry. We estimate welfare im-
provements equivalent to permanent wage gains of 29-35% for most workers.
Consistent with the decline in wage inequality, we find that the welfare gains
are largest for less skilled workers. Workers with less verbal skills see particu-
larly large welfare increases. Math is the only dimension of skill for which the

return increases.

The third finding is that Al has highly heterogeneous effects across occu-
pations, generating large reallocations of employment and wage bills. While
average wages rise modestly, some occupations experience absolute wage de-
clines and employment losses exceeding half their initial employment, whereas
others—particularly Architecture and Engineering, Management, and Computer
and Mathematical occupations—see sizable employment and wage bill gains.

Decomposing these changes, we show that augmentation raises wages quite

3The estimated model can also be applied to study changes in occupational demand (since
the estimation of none of the supply-side parameters depend on assumptions on demand).



uniformly across occupations and does not lead to large reallocation, automa-
tion shifts employment away from highly exposed occupations. Simplification
increases employment, while decreasing average wages.

Early labor market evidence provides suggestive support for our model’s
predictions. Using an event study design around ChatGPT’s November 2022
release, we find that occupations predicted to benefit from Al show differen-
tial positive trends in wage bill shares, with approximately 10 percent of our
predicted long-run effects materializing by early 2025.

Related literature. To predict how technologies affect workers through their
task-specific comparative advantage, we integrate three previously separate
literatures—on task-based production, multidimensional skills, and dynamic

occupational choice—in a single empirically tractable framework.

Our contribution to the literature on task-based production and technologi-
cal change is threefold (e.g., Zeira, 1998; Autor et al., 2003; Acemoglu and Autor,
2011; Acemoglu and Restrepo, 2018, 2022; Autor and Thompson, 2025). First,
we provide methods to estimate workers” comparative advantage across tasks,
a key object in shaping how technical change affects workers. The absence of
such methods has inhibited quantifying the general equilibrium effects of fu-
ture technical change (Woessmann, 2024).* Second, while the literature on task-
based production treats workers’ skills as fixed, we allow for and estimate skill
accumulation—a force shaping workers” adaptation to technical change. Third,
we integrate task-based production into a general equilibrium dynamic occu-
pational choice model (in the spirit of Keane and Wolpin, 1997; Heckman et al.,
1998; Lee and Wolpin, 2006; Dix-Carneiro, 2014; Traiberman, 2019), capturing
workers’ choices over a discrete set of task-bundled occupations (Autor and
Handel, 2013; Hurst et al., 2024).

We also build on the literature emphasizing the multi-dimensionality of skills
(Lindenlaub, 2017; Guvenen et al., 2020; Lise and Postel-Vinay, 2020; Baley
et al.,, 2022). First, we integrate the micro-foundations of multi-dimensional
comparative advantage and skill accumulation into a model of task-based pro-
duction. Second, we overcome the empirical challenges that result from this

task-based approach with a new estimation strategy. The estimation routine

4 Acemoglu and Restrepo (2022) show that the role of comparative advantage across groups
can, to a first order, be captured by a low-dimensional propagation matrix. However, estimat-
ing this matrix relies on the identification of the technology’s labor market effects, so that it
cannot be used to study effects of counterfactual technical change.

4



avoids having to solve for the full equilibrium, ensuring computational feasi-
bility and carrying the conceptual advantage that the sources of identification of
the model’s parameters can be clearly distinguished. Third, to enable task-level
estimation and counterfactual analysis, we construct a database of task-level
skill requirements. Prior work relies on O*NET’s occupational aggregates (e.g.,
Lise and Postel-Vinay, 2020; Baley et al., 2022). We extend these to the task-level

using large language models and validate the database’s accuracy.

Finally, our work relates to a growing literature that quantifies the effects
of task-specific technical change. Freund and Mann (2025) introduce a partial
equilibrium framework to understand how automation affects wages through
changes in the importance of tasks within an occupation, together with a strat-
egy to estimate the distribution of workers” task-level productivity. In com-
parison, our approach allows to understand how prices, wages, and workers’
skills adjust dynamically to Al in general equilibrium. Hampole et al. (2025)
provide a structural framework to quantify Al’s effect on occupational demand
through actual adoption patterns across firms. In contrast, our paper predicts
how Al affects individual workers and the overall labor market by modeling

and estimating workers” comparative advantage and skill accumulation.

2 Model

In the model below, we describe how workers choose occupations, perform
tasks, and accumulate skills over their careers. Productivity and wages depend
on the match between a worker’s skills and the skill requirements of the tasks
relevant to the occupation of choice. Workers accumulate skills on the job, so
that their occupational choice depends on the current wage as well as the learn-
ing benefits that the job offers. Overlapping generations of workers live for A
periods. Technical change can take the form of augmentation, automation, and

simplification of tasks.

2.1 The Firm’s and Worker’s Problem

Occupations and tasks. Each occupation produces a distinct good by combin-
ing a unique combination of tasks. These tasks are combined with a constant



elasticity of substitution p, so that the production function of occupation j is

o

1o\
Yi=| X 0 (1)
T€T;
where 7; is the discrete set of relevant tasks, y- is the output of task 7, and tc
is task T’s importance weight that satisfies 2167; 0;r=1

Task-level productivity and skills. The production function for task T in oc-
cupation j depends on whether the task is automatable, i.e., T € A]-, or not, i.e.,
TeN;:

Ceyef (B, o) if T € N
ye(h, b ke) = (2)
gr’)’ff(h, 1"1—) + kT lf T E A]

where /; represents the share of time allocated to task 7, 7+ is a task-specific
productivity parameter, h = (hs);65 denotes the worker’s specialized skills,
and r; = (rT,S)g cg is the skill requirement of task 7, and k- is capital devoted to
task 7. If the task is automatable, capital and labor are perfect substitutes.

The function f(-) determines how workers with different skills h are differ-
entially productive in tasks depending on its skill requirements, r.. Intuitively,
this function captures how workers productivity depends on the “match” be-
tween their skills and the skills required (Lise and Postel-Vinay, 2020; Baley
et al., 2022). For our quantification, we will assume a functional form for f(-)
(in section 2.4, equation (14)) and show how its parameters can be identified
and estimated. However, for the purpose of presenting the model, the func-

tional form is not needed, so we keep f(+) in this general form.

Technical change. We consider three different ways in which technical change
affects the task-level production function:

Augmentation  Enhancing human productivity, increasing y+;
Automation Performing tasks autonomously at a cost c¢;
Simplification — Simplifying tasks for humans, reducing 7.

The first two are standard in the literature (e.g., Acemoglu and Autor, 2011).
We introduce simplification because we think it is a natural extension in the

context of our model. Furthermore, experimental evidence has shown that AI’s
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productivity effects tend to be stronger for less skilled workers, suggesting that
simplification can be an important force in practice (e.g., Brynjolfsson et al.,
2025b).

The firm’s problem. Each good j is produced by a representative firm that
takes the equilibrium wage {w;(h)};, and the costs of automation capital {cr } e 4,
as given. The firm chooses how many workers of each skill level k to hire, how
to allocate their time across tasks, how much capital to use, and how to allocate
it. Formally, the firm solves the following profit maximization problem:

max / ni(h) (;ajyj(h) —wi(h)— Y chj,T(h))

{nj(h) i () ki (h)} /I

TGA]'
P
o—1
Q
s.t. Y (Z TyT e ) (3)
TeT;
Y 4c(h) = 1Vh
T€7;

G(h) = y=(h, g]T(h)rkj,r(h)) given by (2),

where 7;(h) is the amount of labor employed with skill h, [; - (h) is the share
of time allocated to task 7, and k; . (h) denotes the capital per worker allocated
to workers with skill # working on task 7. Because the marginal product of
capital depends on a workers’ skills, the firm does not in general allocate an
equal amount of capital to each worker.

Since the firm takes wages as given the equilibrium wage must be equal to
the worker’s marginal product. That is,

w () = pYy(h) — X eokyc() @

TEA]'

so that the wage is equal to the value of output minus the cost of capital.

The task allocation problem reduces to maximizing the value added of each
individual worker. To simplify this problem, we assume that capital is produc-
tive enough so that no firm finds it optimal to allocate any worker’s time to
automatable tasks.

Assumption 1 (Full automation of automatable tasks). The unit cost of produc-

ing a task with capital is lower than the cost of producing it with labor for all
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occupations, tasks, and skills. That is, for all occupations j, skills h, and tasks
T E .Aj,
wj(h)

—_— > (7.
’)/rf(h, rr) ’

Optimal time allocation. Under Assumption 1, the worker’s time is allocated

only to non-automatable tasks T € N;. Hence, the firm maximizes

P
o—1
o—1

{li (1)} ey, = argmax Z Ceyef(re) T | st Y be=1.
{ T}TEN TEN TE/\/}'

The solution to this problem for a given task T € N is

Qj,rr)’g_lf(h/ Vr)pil
1
):Ke/\/']- 0]',1(')’1@ f(hr TK)P_l

lj(h) = ()

which shows that more time is spent on tasks with greater effective weight
0. If tasks are substitutes (0 > 1) a worker’s time is allocated to the most
productive tasks, i.e., tasks for which - f(h, r;) is greater. If instead tasks are
complements (p < 1), workers spend more time on the less productive tasks.

Optimal automation. In choosing how much capital to allocate to each worker-
task pair, the firm balances the marginal benefit of increased output against the
cost of capital. The first order condition implies that for all tasks T € A;

Kizx (1) = 0¥ () (ﬁ)p, (6)
Cr

where Y; (h) is the profit-maximizing level of output when a worker with skill

vector h works in occupation j. Clearly, the lower the cost of capital relative to

the price of the output, the more the firm uses capital. Also, firms allocate more

capital to more productive workers, i.e., workers for which Y;(h) is larger.



Occupational productivity. Given the optimal allocation of time and automa-
tion technology to the production of tasks, the output per worker of type h is

L

o—1
L p-1
Y;'(h)(z ki () ° 29 h)yf(h, fr))")

TEA; TEN. i (7)
1

% P

= ]1 ( Z 9] T'Yr h rr) )
TeN;
where

I-p
Ii=1-) 6 ( )
TEA; pj

is the equilibrium income share accruing to the worker in occupation j. Equa-
tion (7) thus shows that a worker’s comparative advantage in occupation j is a

function of their productivity in the non-automated tasks T € ;.

Wages. Combining equation (4) and (7), yields the wage when a worker of
skill h chooses occupation j:

1

w](h) = p]Y](h)l"] = ]17 ( Z 9] T’)’T h rT) ) . (8)

TeN;

Equation (8) shows that if none of the tasks are automatable, i.e. A; = & and
I'; = 1, a worker’s income equals total revenue w;(h) = p;Yi(h).

Skill accumulation. Before entering the labor market at age 2 = 1, each worker
draws an initial skill vector h; after which they accumulate further skills on the
job. We assume that a worker’s human capital accumulation depends on their
current skills, their “ability to learn” ¢, and the skill requirements of the tasks

injob j: b’ = gi(h,¥).

Occupational choice. Every period, each worker chooses from a discrete set
of occupations to maximize utility. Workers are hand-to-mouth. A worker lives
for A periods and their expected lifetime utility (before observing productivity

shocks ¢) at age a when their previous occupation is k, is represented by the



value function

Va(h, ¢, k) = E m?XIngj(h) +log€] + Ui — x(k,j) + BVas1 (g] (h9), 9, ])1
©)
and the value after the terminal age A is zero, V411(-,-) = 0. E[-] represents
the expectation over occupation-specific productivity shocks ¢;, yi; the amenity-
value of occupation j, and g; (h, -) is next period’s human capital when choos-
ing occupation j. x(k,j) is a cost of switching from occupation k to j. In our
quantitative application, we set this to x(k, j) = x1[j # k] for some constant x.°

We assume that the log productivity shocks log ¢; follow a type I generalized
extreme value (Gumbel) distribution with mean 0 and scale parameter { % This
assumption implies that the conditional probability of choosing occupation j

has the closed-form solution

exp (1 (logw;() -+t — (k. ) + BVis (3 (), 9,))

L)y exp (1 (logwi(h) + = x(k, 1) + BVara (g1 (b ), 1)) )
(10)

Po(j | b, k) =
so that the value function in (9) can be simplified to

Va(h, k) ClogZeXp (g (logw;(h) + pj — x(k, j) + BVay1 (g (h,¢),¢,j))>

(11)
Since V411(-,-) = 0, equation (11) solves the value function, and thus the oc-
cupational choice problem, by backward iteration from age A to 1 for a given

sequence of prices.”

and Note that we have suppressed any dependence on
time in the model above. In principle, prices vary over time, so that the wage

schedule wj,(h), and thus the value functions, are time-dependent.

2.2 Equilibrium

The price of each occupational good p; is determined in equilibrium through
demand and supply. The supply is characterized by the solution to the worker’s

problem. The workers, in turn, consume and generate demand for the occupa-

5We assume that occupational switching costs do not apply in the first period.
The CDF is Pr(loge < x) = exp (— exp ( x+§7>) where 7 &~ 0.577 is Euler’s constant.

This is equivalent to assuming that ¢; follows a Weibull distribution.
"Equation (7) solves for wages w; j(h) given prices.
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tional goods. We assume that demand is characterized by a homothetic and
invertible demand function D ({ p]-}]j-zl) that maps prices p; into relative de-
mand for each occupational good. In our application, we use CES demand.

Having specified demand, we can now define the competitive equilibrium.

Definition (Competitive equilibrium). Given an initial joint distribution of age,
human capital, ability, and occupations, G,(h, 1, k), a distribution of human
capital at birth Gy ¢(h, ), and the supply of capital {K+;}{°, a competitive equi-
librium is defined as a sequence of prices {p1s, -, P {res} }:11 such that

— Workers’ occupational choices maximize the present value of lifetime util-
ity given the sequence of prices. That is, their occupational choice proba-
bilities are as in (10);

— The distribution over states follows from occupational choices. That is,

/

Gu—l—l,t—l—l (h,I l/],]) - 2 /gk(h/ 1/J)<h ]Pa,t (] | hl ll)/ k) dGa,t (h/ lIJ/ k) ’ (12)
k=1 )=

— Demand for goods equals supply. That is, D({ pj,t}]lzl) « V; where

A ]
Vie= Yo X0 [ Y0 Pus(j | B k) Eley | b K] Ay 0° - (13)

a=1k=1

— Demand for capital equals supply. That is, for all T

J Pit P
}Cr,t = Z]l[’l,' € .A]] (—) leTy]',t.
=1

j Ctt

2.3 Solution Methods

We provide algorithms to solve for a stationary competitive equilibrium as well
as the transition path after an unexpected one-off change to the parameters of
the model.

8E[e j | j,h, ¥, k] is the expectation of the productivity shock conditional on choosing oc-
cupation j when your states were h, §, k. The Gumbel distribution of loge; implies that this

expectation has a closed-form solution: E[e; | j, b, ¢, k] = exp(=C7)T(1 — {)Pas(j | b, ¢, k)~¢.
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Stationary equilibrium. To solve for a stationary equilibrium, we use the fol-

lowing algorithm:

1. Guess an initial vector of relative prices <p§1), e, p§1)>.

(r) (r)

2. For iteration r, given the prices (pl PERRI 7 ), solve the worker’s prob-
lem and compute the implied output of each good (J)l(r), cee y}”) . Then,
update prices to clear the market given supply: p{'*1) = D! ({y].(” }11:1) :

3. Repeat step 2 until Hp(’“) — p|| < € for a threshold e > 0.

Transition path. We also solve for the transition path after a one-off unex-
pected parameter change. Starting from the initial stationary equilibrium, we
solve for the transition path of prices {p1, -, p ],t}tw:l from the moment the
shock is realized. We numerically approximate this infinite sequence by solv-
ing for {p1s, -+, ps };[:1 for a large enough T such that prices are constant after
period T. The solution algorithm is based on (Boppart et al., 2018):

1. Compute the stationary equilibrium before (f = 0) and after the change
(t=T).

2. Guess a path for the sequence of prices.’

T
3. For iteration r, given the sequence of prices {pgrt) PR p}? }t_l, solve for
the value function att = T,T —1,...,1. Then, compute the implied
output of each good at each time and the corresponding prices pt(rH) =

D1 ({y]-(;) }]]-:1) fort=1,...,T.

(r)

4. Repeat step 3 until Hpt(rﬂ) —p; || <eVt=1,...,T for a threshold € > 0.

Computing implied output given the sequence of prices is the main compu-
tational challenge in these algorithms. It consists of three main steps on which

we provide more detail below.

First, we solve for the value function. This step is conceptually straightfor-
ward. However, when skills are multi-dimensional and there are many occu-

pations j, the state space (h, {, j) is large and value function iteration costly. We

9 A reasonable guess is the path where prices adjust immediately to the new stationary equi-
librium.
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exploit a convenient feature of the logit to provide relief. Since the occupational
switching cost is x(j, k) = x1[j # k], the value function in equation (11) can be

written as

K ] ] K
Va(h, ,k) = {log [eé Y Vi y)+(1-e0) (h,tp)]

j=1

where V] (h,) = exp ( (logw;j(h) + pj + BVasa (8 (h, ) ,l[),j))). This so-
lution implies that it is sufficient to solve for Vg (h, ). Using this property, we
effectively shrink the state space in the value function iteration step by a factor |
(in our exercise, | = 93). Conditional choice probabilities can then be recovered
as

vl (h, ) o i#k

et V() + (1= F) VE (hy)

]Pa(j | h,l,lJ,k) =

Second, after computing the value function and conditional choice proba-
bilities, we compute the joint distribution of age a, human capital h, learning
ability ¢, and occupations k using the law of motion in equation (12). We do
so by simulation. That is, we first draw from the initial distribution of skills
and learning ability at age 4 = 1. Their states imply a conditional probability
to choose each occupation. We then draw occupational choices randomly basd
on these probabilities to obtain the distribution at age a = 2. We iterate this
process forward until a = A.1°

Third, to obtain an update for the relative prices, we compute total implied
production of each good given the previous price iteration. The previous steps
yield a sample of workers with skills and occupational choice. From there, we
approximate the integral in equation (13) for each occupation j. Thatis, we eval-
uate the term Y;(h) P+ (j | h, ¢, k) E[e; | j, h,, k] for each worker-age and for
eachj=1,...,]. In other words, we do not condition on the occupational draw
in the computation of production so that sampling noise only affects workers’
states, not production conditional on those states.

9T save computational costs at early price iterations, we begin with a small number of
simulations, and increase sample sizes as the difference between subsequent price iterations
decrease.
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2.4 Parametrization

In our quantitative application, we make assumptions on the functions that

govern task-level productivity and human capital accumulation.

Production. We specify the task-level production function as

f(h,re) H hes exp <—17 min {h; — rT,S,O}2> . (14)
seS

This production function is similar to that proposed by (Lise and Postel-Vinay,
2020). The first term in equation (14) reflects a force that makes workers with
higher skills more productive in any task, independent of its skill requirements.
The second term captures the degree to which the worker’s productivity is di-
minished when performing tasks for which they are “underqualified”. Figure
A.la shows the functional form graphically.

This functional form assumption implies that the wage function in (4) equals

1

L p—1\ p-1
wj(h) = pT;™ 1—[’1“’5 Y 077 exp (—17 Y min { —rf,s,o}2> .

€S TEAG s€S
(15)

Skill accumulation. We assume that the human capital accumulation func-

tion has the following functional form:

g]',s(h,l[J) = (1-20)hs + Z Ej,T(h) max {r¢,s — h;,0} e~ My) max{res—hs, 0} (16)
TEAG

where /; :(h) is defined in equation (5). Equation (16) has several intuitive im-
plications for skill accumulation. First, workers’ learning is most affected by the
tasks they spent most time on, i.e., for which ¢; - (h) is greatest. Second, workers
learn by performing tasks that are “hard” for them, i.e., tasks that have skill re-
quirements above their current skill levels. However, workers learn most from
tasks that are not “too hard”. As tasks become harder relative to the workers’
skill, the rate at which skills catch up decreases; A(y) > 0 governs the rate of

this slowdown. Figure A.1b illustrates how learning varies with the distance
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between the worker’s skills and the task’s requirements.!! Similar to Heckman
et al. (1998), we allow for workers to differ in their ability to learn ¢. Lastly,
some skill depreciation occurs independently of which tasks are performed,
governed by J.

Note that we have assumed that the worker does not consider the alloca-
tion’s effects on human capital accumulation when allocating their time across
tasks. The assumption allows for a closed-form mapping from the task-level to
the occupation-level, greatly reducing the computational burden. This assump-
tion can be interpreted as resulting from a constraint on time allocation imposed

by employers that do not internalize workers” human capital accumulation.

3 Data

We use three main data sources to estimate the model’s parameters. First, we
rely on O*NET to measure each occupations’ tasks and skill requirements. Sec-
ond, we provide and validate a new database of task-level skill requirements by
extending O*NET’s occupation-level survey on skill requirements to the task-
level using large language models. Third, we use panel data on wages, occupa-
tional choices, and multidimensional skills from the NLSY79.

For the application of our methodology to artificial intelligence, we also re-
quire data on Al’s task capabilities. We follow the literature in using large lan-
guage models to estimate these capabilities (e.g., Eloundou et al., 2024; Ace-
moglu, 2025).

3.1 Estimation Data

3.1.1 Occupations and Tasks (O*NET)

O*NET is the leading database on occupations, tasks, and skills in the US econ-
omy (e.g., Autor et al., 2003; Acemoglu and Autor, 2011; Lise and Postel-Vinay,
2020). O*NET contains detailed descriptions of 19,530 tasks linked to 974 oc-
cupations. We rely on these data to define both the occupations and tasks in
our model. That is, we set the tasks employed across occupations in our model,
7j, to mirror those in the O*NET data. We set the weights of each task 7 in an

USince f(x) = xexp(—Ax) is strictly increasing for x < 1 and strictly decreasing after,

learning from task 7 is maximized when rrs — hs = 1/, yielding a learning gain of 1/ (eA).
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occupation, 9]-/.[, to the importance measure of that task as reported in O*NET.!?

We also use O*NET’s definition of worker skills across 35 dimensions (e.g.,
“reading comprehension” or “social perceptiveness”). O*NET rates skills on a
scale from 1 to 7 and provides anchors for each level (e.g., level 2 in reading
comprehension means being able to “read step-by-step instructions for com-
pleting a form” and 4 to “understand an email from management describing
new personnel policies”).'?

We reduce O*NET’s dimensions into five skill categories: manual, mathe-
matics, social, technical, and verbal.'* Table B.1 shows this mapping. Each

skill’s requirements equal the average of its related O*NET skills.

In our quantitative analysis, we normalize the original skill requirements

(ranging from 1 to 7) to the [0,1] scale by subtracting one and dividing by six.

3.1.2 Task-level Skill Requirements

Workers” comparative advantage in a task is governed by the match between
their skills and the task’s skill requirements, . While O*NET provides data
on occupation-level skill requirements, it lacks task-specific data. To address
this gap, we use OpenAl’s GPT-40 to estimate the task-level skill requirements.
To ensure consistency with O*NET and a valid survey design, we replicate
O*NET’s occupation-level questionnaire on the level of the task, by using their
questionnaire format, skill dimensions, and skill anchors. This process covered
19,530 task descriptions across 35 skills using 683,550 queries. See Appendix
D.1 for further prompt design details.

We validate our data by comparing aggregations of our newly generated
task-level data with O*NET’s occupation-level measures. For each occupa-
tion, we calculate importance-weighted average task-level skill requirements
(Zreﬁ 0 :71,s) and compare these with corresponding O*NET values. The five
aggregated skills have high agreement rates, with correlations ranging from
0.83 to 0.95 (see Figure A.2).1°

12The importance weights are normalized to sum to 1 within occupations.

13The original O*NET questionnaire and skill level descriptions are available here.

l4Relative to Addison et al. (2020); Baley et al. (2022); DeLoach et al. (2022), we include man-
ual as a separate skills because we believe its interaction with Al is of particular interest.

15 Agreement rates are also high across most of the 35 original O*NET skill dimensions (see
Figure A.3).
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3.1.3 Skills, Occupational Choice, and Wages (NLSY79)

We use data from the NLSY79 to estimate the task-level production function
and the skill accumulation function. The data contain information on wages,

occupations, and multi-dimensional skill assessment scores.

We follow the literature in measuring skills in the NLSY79. As Addison et al.
(2020); Baley et al. (2022), we measure skills with the Armed Services Vocational
Aptitude Battery (ASVAB): manual skills are measured as the average of scores
on auto and shop information and mechanical comprehension, math skills are based
on mathematics knowledge and arithmetic reasoning scores; technical skills on gen-
eral science and electronics information; verbal skills on paragraph comprehension
and word knowledge.'® We standardize each of the subscores before aggregat-
ing. For social skills, we use a composite measure of self-reported sociability
as a young adult, sociability at age 6, the Rotter Locus of Control Scale, and the
Rosenberg Self-Esteem Scale (see also Deming, 2017; Addison et al., 2020; Guve-
nen et al., 2020).

These data only provide an ordinal measure of skills. That is, we only ob-
serve i = F(h) where F(-) is the distribution function of the initial skill distri-
bution. We do not directly observe the cardinal measure h that is on the same
scale as the skill requirements. We therefore estimate the marginal distribution
of skills together with all other parameters (see section 4).

We follow the NLSY79 cohort’s labor market history from age 25 to the sur-
vey in 2022. We retain information on all jobs held, including their start and
end dates, the occupational code, the hourly wage, and the number of hours
worked per week. Similar to Lise and Postel-Vinay (2020), we only consider
workers for which the maximum gap between observed jobs is no larger than

18 months. We collapse this data to a worker panel of yearly frequency.

3.2 Data on AI’s Capabilities

In the model presented in section 2, Al’s capabilities can take three forms: aug-
mentation, automation, and simplification. Below we describe how we estimate
these capabilities by task. We acknowledge that there is substantial uncertainty

surrounding these capabilities. However, we view these estimates as reason-

16Relative to the set of skills in (Baley et al., 2022), we add manual skills as we believe this
skill is of particular interest in the context of AL
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able and provide evidence to that effect. As our baseline, we only consider the
effects of generative Al (data summarized in Table B.3).!” However, we also

consider smart robots and autonomous vehicles in an alternative scenario.!®

Augmentation. In measuring Al’s potential to augment human productivity,
we follow Eloundou et al. (2024) who asked human raters and OpenAl’s GPT-
4 whether they believed that LLMs can reduce the time required to complete a
task by at least half. From the perspective of the model, we interpret this as ask-
ing about the increase in human’s productivity, governed by ;. We replicate
their exercise with GPT-40, except that we asked for a continuous estimate of
the percentage of time saved rather than a binary measure and consider gener-
ative Al more broadly. On average, we estimate that generative Al saves 20.2%
of worker time (see Table B.3). Appendix D.2.1 describes our prompt design.
The prompt also describes how we extend it to smart robots and autonomous
vehicles.

We validate our new data on task-level Al augmentation in two ways. First,
we find that our estimates are strongly correlated with both the human rated
and GPT-4 rated data from Eloundou et al. (2024), especially considering that
their measures are binary (see Figure A.4a). Second, we compiled experimen-
tal estimates of the productivity effects of generative Al in various tasks and
occupations and and compared them with our estimates (see Table B.4). Reas-
suringly, our estimates closely approximate those experimental estimates.

Automation. We also follow Eloundou et al. (2024) by eliciting automatability
by task from large language models. That is, we ask for each task in the O*NET
database whether Al can complete the task autonomously. From the perspec-
tive of the model, we view this as asking whether a task 7 is in the automat-
able set A;. Eloundou et al. (2024) classify tasks as having either “no”, “low”,
“moderate”, “high” or “full” exposure to automation.'” We classify a task as
“automated” if it has high or full automation exposure, which is restricted to
cases where the LLM indicates that generative Al can complete at least 90% of
the components of the tasks. We estimate that 22.2% of all tasks can be fully
automated by generative Al (see Table B.3). The prompt is documented in Ap-
pendix D.2.2.

7We use Gartner’s definition which can be found here.
8For definitions of these technologies, we again follow Gartner: see here and here.
9The specific prompt is documented in (Eloundou et al., 2024, Supplementary Materials).
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We find high agreement rates between our measures and those obtained by
Eloundou et al. (2024). The share of tasks that are automatable is almost iden-
tical across the measures (21 vs. 22%). Importantly for our exercise, we find
strong agreement on the share of automated tasks by occupation (p = 0.82, see
Figure A.4b). Table B.2 shows that agreement is also strong on the task-level.

Simplification. Lastly, we elicit the degree to which Al makes tasks easier. In
addition to our new data on pre-Al task-level skill requirements, we prompt
GPT-4o to evaluate the task’s skill requirements before and after workers gain
access to generative Al. The prompt can be found in Appendix D.2.3. We esti-
mate that across all tasks and skill dimensions, the average required level falls
by 18.3% once workers get access to generative Al (see Table B.3). A one-step
reduction (on O*NET’s 7-step scale) is the most common change. We cannot
directly validate the accuracy of these predicted changes. However, we do find
that the predicted pre-Al skill requirements strongly correlate (0 = 0.86) with
those resulting from the prompt to elicit task-level skill requirements in section

3.1.2, which contained no reference to Al (internal consistency).

Al capabilities across occupations and skills. The degree to which an occu-
pation is affected by these three channels is positively correlated. Automatabil-
ity is highly correlated with augmentation (o = 0.89). Occupational tasks expe-
riencing strong augmentation also see the greatest skill requirement reductions
(o = 0.90).

There is large heterogeneity in what Al can simplify across skills: the strongest
simplification occurs in time management, writing, judgment and decision mak-
ing, and critical thinking, versus the least simplification in the manual skills of

equipment maintenance, repairing, and installation.

Lastly, we find that augmentation and simplification is most common for
tasks with initially high skill requirements. Automation is less correlated with
skill requirements: if anything, the middle-skilled tasks are most prone to au-

tomation A.5.
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4 Estimation and Model Fit

We jointly estimate the parameters governing productivity, skill accumulation,
occupational choices, and the initial skill distribution. We provide a computa-
tionally efficient methodology to do so using direct inference on the NLSY79 es-
timation sample. Importantly, it recovers the equilibrium prices directly, avoid-
ing the need to solve for the equilibrium within the estimation loop. Table B.5
shows an overview of all model parameters and their estimated values. In this
section, we discuss the procedure in detail.

4.1 Estimation strategy

The goal of the estimation strategy is to find the parameters that maximize the
likelihood of the observed wages and occupational choices. Relative to a full
maximum likelihood approach, we reduce the computational burden in two

main ways. First, we use a sequential approach. That is, we maximize the
likelihood

L (61,6y(61),p(61),1(61))

with respect to 61, where 8, = {7, {ws}scs, {yj}]lzl} are task-level productivity
parameters, p = { yj}]j-zl are occupational amenities, and p = { p]-}]lzl are equi-
librium prices. We show how to obtain consistent estimates of 0,(601), #(601),
and p(6) using a computationally efficient algorithm. Second, we only maxi-
mize the likelihood of the old population’s occupational choices (for whom the

problem is static), avoiding repeated solution of the dynamic value function.

Inner algorithm. The first step in the inner algorithm is to compute the work-
ers’ skills given 0;1. The NLSY79 provides multi-dimensional skill scores. How-
ever, we observe those skills i) only as percentile scores, not as cardinal mea-
sures, and ii) only at labor market entry, not later. We first map percentile scores
into cardinal skills h using the marginal distribution, approximated with a Beta
distribution with parameters in 61.2° We then use successively applying the
skill accumulation function g;(-, 1) in equation (16) to infer workers’ skills at
later ages. That is, given worker i’s occupational history jf_l ={ji1 - Jia-1}

20The Beta distribution is a flexible distribution characterized by two parameters B, and B,
with support on [0,1]. We assume that this distribution is common across skill dimensions.
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worker i’s skill level at age a is
hio(A(¥:),6) = <8ji,a_1('/’ubi) 08 i)o... Ogji,l(v’#z‘)) (hig).

where (fog)(x) = f (g(x)).?! Following Heckman et al. (1998), we proxy l[JZ' by
the Armed Forces Qualification Test (AFQT) score. The parameters {A(y)}4
and ¢ are in 0.

Pp=1

We estimate the occupational wage functions using a simple linear regres-
sion given workers’ skills. The derived occupational wage function in equation
(15) governs how skills translate into earnings in each occupation depending on
the prices, the occupation’s tasks, and the parameters of the production func-
tion {ws}ses and 1. A log-linearization of this function (around no mismatch)

implies that

log w; (hia) ~log p; + Z ws log(his) — 11 Z Z 9] rmin {h;; — rT,SIO}Z (17)

SES seSteT; i

where éle = Gjlr'yﬁ_l (see Appendix C.2 for the proof).?? Equation (17) shows
that we can estimate the equilibrium prices p; and the parameters of the pro-
duction function using a simple OLS regression of wages on occupational fixed
effects, skills, and skill mismatch. We use a control function approach to correct
for selection on the productivity shocks ¢; (Dubin and McFadden, 1984).2

Given the wage function, we estimate the occupational amenities y using a
fast iterative procedure. The worker’s occupational choice problem is static at
the terminal age since their choice probabilities no longer reflect occupations’
differential learning value. That is, for a = A, equation (10) simplifies to

exp (1 (logw;(h) + iy — (k. )) )
E_yexp (& (log wy(h) +pu — (k1)) )

Pa(j [ k) = (18)

where ( (scale of productivity shocks), x (switching costs) are in 6; and thus

21To save notation, it is left implicit above that h; ; depends on A(;) and ¢ through g i)
22For estimation, we assume that ZreTj éj,r = 1forallj =1,...,] and that O*NET’s task-

importance weights capture (§] «. Also, since we estimate the model on data before the change
of interest, the equation above reflects wages when no task is automated, i.e., A; = .

ZDue to non-random occupational choice, the expected value of log ¢; j Condltlonal on choos-
ing jis —ClogP,(h, {, k). We control for this term in the regression. We estimate the probabili-
ties using occupation-specific logit regressions that condition on workers’ previous occupation,
10-year age bins, and each dimension of their initial skill.
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taken as given in this step. The likelihood is maximized with respect to # when
the observed share of workers in each occupation j, s, equal the model-implied
share, §; (#). We solve for this # using the contraction mapping proposed by
Berry et al. (1995):
(r+1) _ () , 5.
pi ' =u +¢(In(s;) —In (5 (u))) forsome¢ € (0,1] (19)
where ¢ is a damping parameter. In practice, we use the SQUAREM algorithm

to speed up convergence (Varadhan and Roland, 2008; Reynaerts et al., 2012;
Conlon and Gortmaker, 2020).

Outer algorithm. In the outer algorithm, we optimize over the remaining pa-
rameters governing skill accumulation function, occupational choices, and ini-
tial skills. We choose these parameters to maximize the joint likelihood of the
wage function and the occupational choices (of the old population). That is,

N A ]

61 = argmax Z Z 2 jia = j] log 7t (log Wi, — log @;q(61)) +
01 i=la=1j=1

(20)

J
Z ]lA _] IOS]PA(] | hlA/¢llkllel)

M=

where zbilu,]-(ﬂl) is the expected wage based on the inner-step given 0.

In the model, the choice-relevant shocks log ¢; are Gumbel. To allow for ad-
ditional choice-irrelevant wage noise (measurement error, idiosyncratic pay), we
add an independent term v; so that the total wage shock is loge; = loge; +
logv;. We take logv; to be Gaussian and approximate log €;, and thus the den-

sity function 7(+), by a normal distribution.**

Estimation results. Table 1 shows the results of the estimation of the produc-
tion function in equation (17). The first five columns show the degree which
various skills increase productivity across all skills. We find that the returns to
math and social skills are highest, consistent with Deming (2017). Importantly,
we also find that the cost of underqualification is substantial, yielding strong

comparative advantage across tasks with different skill requirements. The co-

24Gtrictly speaking, the sum is not Gaussian and the distribution becomes a convolution.
However, given that we find that the variance of the choice-irrelevant shocks is considerably
larger than that of log ¢;, the impact of this simplification is minimal.
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efficient on 77 implies that if a worker’s skill is one level below the task’s skill
requirement (on O*NET’s 1 to 7 scale) in each dimension, their productivity
in that task is about 79% of their productivity in tasks for which they are not

unqualified in any dimension.?

TABLE 1: PRODUCTION FUNCTION: PARAMETER ESTIMATES

General skill Mismatch
WMn WMt wsg wr wy 7
0.228 0.571 0.401 0.171 0.250 1.657

(0.018) (0.021) (0.016) (0.027) (0.023) (0.083)

Notes: This table shows estimates of the task-level productivity parameters. Subscripts Mn,
Mt, S, T, V refer to manual, math, social, technical, and verbal, respectively. Estimates are
obtained through OLS based on equation (17). Standard errors in parentheses (not corrected
for uncertainty in other parameters).

The occupational prices are recovered from the occupational fixed effects in
the production function regression. Consistent with the model, the estimated
occupational prices p; are strongly correlated with the skill requirements in the
respective occupations: skill requirements explain around 73% of the variance

in prices across occupations (see Table B.6).

We show estimates of the parameters that determine initial skills and skill
accumulation in Table 2. The depreciation rate of human capital when doing
work for which one is overqualified is 0.0004. A () is inversely related to some-
one’s ability to learn. The results in Table 2 thus suggest that the learning cost
decreases with the AFQT score. Lastly, B, and B; are the shape parameters of
the initial Beta distribution of skills. The implied average is BaBTaBb = 0.35. This
translates to an average of 3.11 on the original O*NET scale from 1 to 7, in be-
tween the “low” and “medium” skill requirement levels. Figure A.6 plots the
density function.

A 1-point skill gap on the O*NET scale correspond to a 1/6 gap on our [0,1] scale. Hence,
using equation (14) implies that the mismatch term is exp (—11 5. (%)2) ~ 0.79.
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TABLE 2: SKILLS AND SKILL ACCUMULATION: PARAMETER ESTIMATES

Learning costs Depr. Initial dist.
A1) A(2) A(3) A(4) ) B, By,
21.20 18.01 17.07 16.06 0.0004 67.95 125.05

Notes: This table shows parameters estimates for the law of motion for skill accumulation in
(16) and the intial skill distribution. A(y) refers to the learning cost at quartile i of the AFQT
distribution.

Lastly, our estimate of the scale parameter { = 0.053 and of the switching
cost parameter £ = 0.340. The estimate for x implies that the utility cost of

switching occupations is equivalent to a 29% wage loss.

Calibrated parameters. Some parameters are set externally. In sections 3.1.1
and 3.1.2 we explain how we measure the task set 7}, the task weights 6; , and
the skill requirements r; for each occupation j and for each task T € 7;. We
set the number of periods A to 40 so that each period in the model represents
a year between ages 25 and 64. Following Keane and Wolpin (1997), we set
the discount factor B is set to 0.78 (see also Postel-Vinay and Robin (2002) for

similar estimates).

We set the elasticity of substitution between occupations ¢ to 1.57—the mid-
point between Burstein et al. (2019) (1.81) and Caunedo et al. (2023) (1.34)—and
the substitutability between tasks p to 0.49, as estimated by Humlum (2019).

Lastly, we need to calibrate the share of income that will accrue to Al in each
occupation. Equation (4) shows that this share is equal to ) ;¢ A; 0ix (cc/p)) 1-p.
In Appendix C.1, we derive how this share is identified from the share of tasks

that are automated and the average cost savings by automated task:

ZTEA]‘ Gj,T

1-T;= Y 6. <CT 21)

I—p
w4, Pf) Teea O+ (1= Teea, i) 10!

where yx is the cost of producing automatable tasks with Al relative to with
human time. Following Acemoglu (2025), who based the estimated cost savings

on experimental evidence, we set xy = 0.73.
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Demand for occupations. Lastly, we estimate the demand for occupations.26

We assume that occupational goods are substituted with a constant elasticity of
substitution (CES) ¢. Formally, demand for occupation j, Dj({p;}j=1) « wjp;
where «; is the CES weight of occupation j. This demand system implies that,
for two occupations i and j,

-1
& _ [ pi ’ o Wage share of occupation i
j B p; Wage share of occupation j
We compute occupational wage shares from the 2018 BLS Occupational Em-
ployment and Wage Statistics (OEWS). The occupational fixed effects in equa-
tion (17) are consistent estimates of the (log) occupational prices.”” From those

estimates, we can compute the implied weights {« ]'}]].:1 for a given o.

4.2 Model Fit

The model’s steady state moments fit labor market data well. The model’s mo-
ments are computed from a simulated sample of 100,000 workers living in the
steady state before any technical change occurs. Figure 1 reports how well the

moments from this simulated panel matches the data.

First, Figure 1a shows that the model captures the unconditional distribution
of wages reasonably well. Given that some drivers of wage inequality, such as
regional, racial, and gender differences, are omitted from the model it is not
surprising that inequality is somewhat underestimated. However, this under-
estimation is quite limited. For instance, the ratio between the 75" and the 251
percentile 2.04 in the data, compared to 1.84 in the model and the top 10% wage
share is 20% in the model, compared to 26% in the data. Table B.7 reports how

various other measures of inequality compare between the model and the data.

The model also accurately replicates patterns of occupational sorting. Fig-
ure 1b shows the correlation between the average skill by occupation in the
model and the NLSY79 data. To compute this correlation, we only use the oc-

cupational choices of the young population for which we observe the skills di-

26Note that we estimate all supply-side parameters independently of demand. This is an
advantage as it allows to change the demand structure without having to re-estimate any other
parameters.

?’To reduce noise in the price estimates, we apply empirical Bayes regression to the price
predicted by the skill requirements (see e.g., Walters, 2024).
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rectly from the skill assessment scores.?®

The correlations range between 0.6
and 0.8 across skill dimensions, implying that 1) the skill assessment scores in
the NLSY79 are predictive of occupational choices (see also Lise and Postel-
Vinay, 2020) and 2) workers in the model select into occupations based on their

skills in ways similar to that observed in the NLSY79.

Figure A.7a shows that the average wage by occupation matches the data
almost perfectly. This is the most directly targeted moment, as we estimated
demand based on occupational wage shares and job-specific amenities based

on occupational employment shares.

The median wage by age also matches the pattern observed in the data. Fig-
ure A.7b shows that the model matches the growth rate of wages from labor
market entry to around age 55. However, the wage pattern in the model is not
as concave as in the data, so that growth in the first years is underestimated
and growth in the last 10 years overestimated. Furthermore, the model predicts
markedly higher wages in the first period than those directly after. This fea-
ture is caused by the fact that occupational switching costs are only incurred
after the first period. Workers are therefore more likely to choose occupations
in which they are highly productive (i.e., with a high ¢;) in the first period than

in any later periods.

The model also accurately reflects the probability that a worker changes oc-
cupation from one year to another. The probability of staying within the same
3-digit occupation is 0.86 in the model and 0.90 in the CPS data. This moment is
directly targeted by the switching cost parameter x. However, we also find that
the model fits the (untargeted) probability that a worker stays within a broader
2-digit occupational group well: 0.92 (model) and 0.94 (CPS data). In other
words, even though the occupational switching cost applies equally across all
but one occupation, the model captures that workers are more likely to stay

within a similar set of occupations.

We further compare the transition probabilities between occupations condi-
tional on switching. The correlation between the (log of) the transition prob-
abilities in the model and data is 0.56 on the 2-digit occupation level. On the
3-digit level, it is substantially lower: 0.20. In other words, the model accu-
rately predicts occupational transitions across 23 broader occupational groups.

Within those groups, occupational transitions are harder to predict, because oc-

28This makes the test as stringent as possible because it prevents the skills in each occupation
to “mechanically” reflect the skills required in the occupation through the estimated learning.
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cupations are more similar in skill requirements within those groups.

FIGURE 1: MODEL FIT: COMPARING MODEL MOMENTS WITH DATA

(A) WAGE DISTRIBUTION (B) SKILL SORTING BY OCCUPATION
— Data

——— Model Manual
Math
= Social
A Technical
Verbal
b

0 50 100 150 200 0 5 4 6 8

Hourly wage (in 2013 $) Correlation between model and data

Notes: Panel A shows a kernel density plot of the wage distributions of the NLSY79 data and the
model’s steady state. Panel B reports the correlation between the average skill by occupation in
the model’s first period and the NLSY79.

5 Artificial Intelligence and the Labor Market

This section applies our model to understand how Al affects labor markets. We
consider Al-induced augmentation, automation, and simplification and study
its general equilibrium effects on wages, wage inequality, welfare, skill returns,

and occupations.

5.1 AI’s Effect on Wages and Inequality

We start by studying Al's impact on the steady state wage distribution. Figure
2 shows sizable average wage gains (about 24%). These gains are concentrated
at the bottom of the distribution and are nearly zero at the 99" percentile.
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FIGURE 2: WAGE CHANGES ACROSS THE DISTRIBUTION
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Notes: This figure shows the distribution of wage changes induced by generative Al across the
wage percentile distribution. The horizontal axis represents wage percentiles weighted by pre-
Al employment, and the vertical axis shows the percentage change in wages for each percentile.
The black line shows the joint effect of Al’'s augmentation, automation, and simplification on
each wage percentile. Other lines show the effects when each of the three channels are operating
alone.

Simplification is the primary driver of the distributional effects. Figure 2
shows the impact when Al operates only through augmentation, automation,
or simplification. Augmentation and automation yield broadly level impacts
across the distribution. By contrast, simplification raises wages at the bottom

while lowering them at the top in absolute terms.

Simplification’s effect on average wages is theoretically ambiguous because
two forces work in opposite directions. On the one hand, simplification of a
task increases productivity for any given skill (see equation 14). On the other, it
limits opportunities for learning. We find that the net effect of these two forces
is slightly negative (—2.6%).

Workers’ ability to adjust their occupational choices and accumulate new
skills dampens the long-run distributional impact of automation and augmen-
tation. When augmentation and automation are not systematically biased to-
ward tasks with particularly high or low skill requirements, they raise produc-
tivity proportionally for all workers in an occupation, and workers arbitrage
away wage differentials by reallocating across occupations. In practice, Al's

augmentation and automation capabilities are correlated with tasks’ skill re-
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quirements (see Figure A.5), implying that they can also generate some distri-
butional effects. We find that those effects are quantitatively small relative to

the direct effects of task simplification, however.

5.2 Which Workers Gain or Lose the Most?

We next examine the implications of Al for workers’ ex-ante welfare, given the
sizable effects on the wage distribution. Specifically, we compare expected wel-
fare at labor market entry, conditional on initial skills, in economies with and
without AI. We measure welfare changes using equivalent variation, defined as
the permanent wage increase across all occupations that delivers the same wel-
fare gain as the introduction of Al Figure A.8 reports the distribution of this
measure, which lie between approximately 29% and 35% for most workers, im-
plying sizable ex-ante welfare gains for almost everyone. The welfare gains
exceed the average wage increase because utility is concave in income and Al
disproportionately raises wages at the bottom of the distribution.

FIGURE 3: HOW WELFARE EFFECTS DIFFER BY SKILLS
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Notes: This figure shows how welfare effects differ by skills. The welfare effects are measured
in equivalent permanent percentage wage increases. This figure plots the coefficient of a regres-
sion of these welfare effects on skill levels across all dimensions. For interpretability, the skills
are expressed on the O*NET scale from 1 to 7.

Consistent with the decrease in wage inequality, we find that the ex-ante
welfare gains are largest for less skilled workers. Figure 3 shows the coefficients
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of a regression of the welfare gains on initial skill levels. Workers with high
verbal skills see the smallest increases in welfare gain: a 1-point increase in
verbal skills (on the 6-point O*NET scale) decreases the welfare gains by 3%.
Higher math skills, in contrast, yield a slightly higher welfare gains.

5.3 How Do Occupations Change?

We next ask how occupations” employment and wages are affected by Al

First, Figure A.9 shows that there are strongly heterogeneous effects on occu-
pation’s total wage bills, average wages, and employment shares. While wages
increase by 24.2% on average, wages in some occupation decline in absolute
terms (Figure A.9b). Because our framework allows for occupational re-sorting,
part of these occupational effects reflects selection. The size of this occupational
reallocation is evident in Figure A.9c, which shows that some occupations lose

more than 50% of their employment.

FIGURE 4: AI’S EFFECT ON OCCUPATIONS” WAGE BILLS
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Notes: This figure shows the model predictions on Al’s wage bill effects by occupational group.
Appendix Figure A.11 disaggregates these effects across detailed occupations.
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We then zoom in on individual occupations. Figure 4 displays Al’s effects
on the wage bills of 2-digit occupational groups. Life, Physical and Social Science
experiences the largest wage bill increase, while Office and Administrative Sup-
port sees an absolute decline in its wage bill. The wage bill is the average wage
times the employment. Figure A.10 shows that the effects on employment and
wages often work in the opposite direction. For instance, Architecture and En-
gineering experiences the largest increase in employment share and the largest
decrease in average wages. Building Cleaning and Maintenance experiences the

largest increase in average wages and a decline in employment.

FIGURE 5: AI’S EFFECT ON OCCUPATIONAL EMPLOYMENT & WAGES
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Notes: This figure shows the model’s predictions on Al's employment and wage effects by
occupational group. Occupations are sorted in descending order of Al's effect on the total
wage bill, so that the first listed occupation experiences the largest wage bill increase. We
conduct a Shapley-Owen decomposition to separate the overall change into the contribution of
each channel: augmentation, automation, and simplification.

We assess how each Al channel—augmentation, automation, and simpli-
tication—contribute to these occupational outcomes. We recompute occupa-
tional outcomes under all possible combinations (e.g., only augmentation, only
augmentation and simplification, etc.) and decompose the total effect into the
contributions of the three channels. Figure 5 summarizes these results. First,

augmentation generates little change in employment shares and raises average
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wages almost uniformly across occupations. Second, automation leads to large
changes in employment, but not to substantially different wage growth across
occupations. Finally, simplification generates sizable and opposing effects on
employment and wages: by lowering skill requirements, it expands the pool of
workers who can perform the occupation productively, which raises employ-
ment but compresses average wages.

The regression results in Table B.8 systematically relate occupational out-
comes to augmentation, automation, and simplification exposure. It confirms
that i) augmentation is not a major driver of relative employment or wage
changes, ii) automation mostly reallocates employment to less exposed occupa-
tions while not having strong effects on wages, and iii) simplification leads to
relative wage declines and employment growth. We further consider how aug-
mentation and automation can indirectly induce simplification by shifting the
effective weights of tasks with different skill requirements (Autor and Thomp-
son, 2025; Freund and Mann, 2025). Such indirect simplification has effects on

employment and wages that similar to those of direct simplification.

What characterizes occupations that gain the most from AI? Perhaps surpris-
ingly, there is only a weak relationship between labor market gains and occupa-
tions” pre-Al skill or education levels (see Figure A.13a). Both the top and bot-
tom deciles by wage bill increases have similar skill requirements and educa-
tion levels. This weak overall relationship masks a U-shaped pattern: through
the 80th percentile, occupations with larger gains tend to have progressively
lower skill requirements (except manual skills), but this reverses sharply at the
top, where the highest-gaining occupations skew toward higher skill intensity.
Education follows the same pattern.

5.4 Al with Physical Capabilities

Lastly, we examine how these occupational effects change when considering
Al technologies with physical manipulation capabilities, such as Al-powered
robots and self-driving vehicles.These estimates are necessarily subject to more
uncertainty, but highlight how technological capabilities determine which hu-

man skills retain value and thus which workers benefit or lose.

Aggregate effects. The addition of physical capabilities substantially ampli-

ties Al’s labor market impact. Average wages rise by 39 percent in this scenario—
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an effect 60 percent larger than the gain from generative Al alone. Changes in
inequality, previously shown to be driven mainly by simplification, follow a

similar pattern in both Al scenarios.

Occupational reallocation. There are notable shifts in the patters of occupa-
tional reallocation as Al gains physical manipulation capabilities (see Figure 6).
Community and Social Service and Education, Training, and Library occupations are
the main winners, more than doubling in wage bill. In contrast, a larger num-
ber of occupational groups now lose over a quarter of their wage bill, including
Office and Administrative Support, Transportation, and Production occupations.

FIGURE 6: AI’S IMPACT WITH VS. WITHOUT PHYSICAL CAPABILITIES
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Notes: This figure shows the model’s predictions on Al’s wage bill effects by occupational group
under two scenarios: one with only generative Al and one where Al systems also possess phys-
ical manipulation capabilities (“smart robots”). Occupations are sorted in descending order of
generative Al’s effect on the total wage bill, so that the first listed occupation experiences the
largest wage bill increase.

Several occupations that were predicted to experience large gains from gen-
erative Al are predicted to experience large losses if Al gains physical capabil-
ities. The most striking reversals occur for occupations in food preparation and
serving, farming, fishing, and forestry, production, and transportation occupations.
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Those are occupations requiring manual skills that AI with physical capabili-
ties (but not generative Al) can provide but low levels non-manual skills that
would otherwise shield those occupations from automation (see also Figure
A.14a). Overall, the pattern of returns to skills also intensifies our findings for
generative Al: math skills become even more valuable, while the returns to all

other skill dimensions decline further.

Beyond skill requirements, what characterizes the occupations that gain the
most? There is a strong positive correlation in the education level typical to
an occupation and their wage bill increase (see Figure A.14b). This contrasts
sharply with the generative Al scenario, in which education showed little cor-
relation with changes in occupational outcomes. The winning occupations tend
to employ slightly older or experienced workers and are far less likely to em-
ploy Black workers.

6 Early Signs of Al's Impact on the Labor Market

In this section, we turn from our model’s theoretical predictions to empirical
evidence. First, we use recent labor market data from the CPS to test whether
the model’s predictions are beginning to unfold. Specifically, we use an event
study to assess whether predicted occupational outcomes correlate with ob-
served changes following the first broad release of capable models in late 2022.
Second, we zero in on two occupations frequently discussed in relation to Al’s

impact to explain and validate the model’s predictions.

6.1 Event Study of Aggregate Labor Market Shifts

We implement an event study design using Current Population Survey (CPS)
data from 2020 to 2025. Our continuous treatment variable is each occupation’s
model-predicted change in occupational outcome AY, (wage bill share, employ-
ment, or wages). The specification assesses whether the model predicts differ-
ential occupational trends after ChatGPT’s release in late 2022, conditional on
occupation fixed effects («,), time fixed effects (), and time fixed effects inter-
acted with occupation-level controls (1; - X,):

Yo = Z ,Bk'ﬂ[t:k] X AY0+“0+7t+77t'Xo+€o,t-
kA1
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The coefficients B capture differential trends for occupations with higher pre-
dicted change, with B, = 1 indicating that the full model-predicted effect has
materialized by period k.?’

Figure 7 presents our event study estimates. Occupations predicted to gain
importance based on their wage bill’s share of the overall economy indeed be-
gin to see a relative increase starting around two years after OpenAl’s first re-
lease of ChatGPT. This effect gradually increases over time. The magnitude of
our estimates suggest that by late 2025, between 5 and 10 percent of the pre-

dicted wage bill share gains have materialized.

FIGURE 7: EARLY LABOR MARKET EFFECTS OF GENERATIVE Al
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Notes: Event study estimates (Bk) show differential changes in occupational wage bill shares
following ChatGPT’s November 2022 release. Coefficients represent the effect of the model-
predicted change in the outcome on the observed outcome. A coefficient of 1 would indicate
complete realization of model predictions. Estimates use CPS data aggregated to 6-month peri-
ods with occupation fixed effects and time fixed effects. The specification with controls includes
occupation-specific trends based on education, sectoral composition, demographics, and pre-
Al wages. Error bars represent 95%-confidence intervals.

Appendix Figure A.17 shows results for the wage bill’s two components:
employment and wages. Employment begins to rise significantly for occupa-
tions predicted to gain employment from Al starting around one year after
ChatGPT’s release. In contrast, we do not observe any meaningful effects on

2To reduce sampling noise, we aggregate monthly CPS data into 6-month periods to com-
pute the occupational outcomes Y, ;. Our sample includes working-age individuals (18-65) in
the labor force.

35



wages, suggesting that the initial adjustment of the labor market occurs mostly
through quantities not prices (this finding is also consistent with evidence on
young workers from Brynjolfsson et al., 2025a).

We interpret this evidence as suggestive, particularly given that some em-
ployment effects appear to predate 2022. While this timing could indicate that
other factors correlated with Al adoption are driving these patterns, an alter-
native explanation is that occupations most exposed to Al (such as radiolo-
gists and telemarketers) had already begun adopting generative Al tools before
ChatGPT’s public release, experiencing labor market impacts correspondingly

earlier (see, e.g., Acemoglu et al., 2022).

6.2 Case studies

Radiologists. In 2016, deep learning pioneer Geoffrey Hinton warned to “stop
training radiologists,” because Al would render them obsolete within five years.
Since then, radiology has indeed accounted for more than 75 percent of all FDA-
authorized clinical Al tools, and roughly two-thirds of US radiology depart-
ments report using Al (Mousa, 2025). However, the labor market for radiol-
ogists has only gotten stronger: their wage bill share increased by 6.6 percent
between 2016 and 2024. This increase is driven by strong employment growth
(23.2% versus average of 9.8%) and attenuated by below-average wage growth

(30.1% versus average of 36.9%).

Our model’s predictions line up with these observed labor market patterns.
We predict a 42 percent wage bill increase, gains 1.75 times larger than the
average occupation. In line with observed occupational changes, the model-
predicted increase in the wage bill from Al is driven by above-average employ-
ment growth (28% versus average of 0% by construction) and a below-average
wage growth (11% versus average of 24.2%; see Figure A.10).

The key to understanding these outcomes lies in how Al reshapes radiolo-
gists comparative advantage (see also Dranove and Garthwaite, 2022). While
automation typically reduces employment, radiologists experience minimal au-
tomation exposure: only four of their 29 regular tasks are automatable (54th
percentile). Moreover, these automatable tasks are their least skill-intensive
(61st percentile versus 78th for non-automatable tasks; see Appendix Figure
A.15). Augmentation provides modest productivity gains (22 percent, 53rd per-

centile) while direct simplification is below median (46th percentile).
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Management Analysts. If radiologists exemplify how Al can complement hu-
man labor, management analysts (also known as management consultants) il-
lustrate the opposite. They face one of the highest degrees of simplification of
any occupation, ranking in the 97th percentile, as Al reduces the average skill
level of their tasks by 25 percent. Consultants’” productivity increases 28 per-
cent through augmentation (85th percentile) and their tasks have moderate ex-
posure to automation, with three of their eleven tasks being automatable (52nd
percentile).

In addition to direct simplification, management analysts also experience
substantial indirect simplification, as the tasks that are automated tend to be
the most skill-intensive. Automated tasks have an average skill requirement
at the 87th percentile of all tasks in the economy, compared to the 66th per-
centile for non-automated tasks. Automatable tasks typically involve struc-
tured problem-solving and documentation that follow predictable analytical
procedures, whereas non-automatable tasks center on interpersonal interac-

tions such as interviewing or coordinating with others.

This pattern of simplification aligns with experimental evidence. Dell’Acqua
etal. (2023) find that when consultants use Al, lower-skilled workers experience
larger productivity gains. Through the lens of our model, this can be directly ex-
plained through simplification: the reduction in the skill requirements increases
the relative productivity of workers who have skills below the requirements.

As a result, the broader occupational group of Business Operations Specialists
ranks among the more negatively affected. The model predicts a 4 percent de-
cline in employment and no change in wages, well below the average worker’s

increase of 24 percent.

Telemarketers. Telemarketers also represent one of the clearest cases where
Al substitutes for, rather than complements, human labor. Their work consists
of 12 distinct tasks, all of which can be automated by generative Al Indeed, our
model predicts that telemarketers” occupational group, Other Sales and Related
Workers, ranks among the 5 percent of most negatively affected groups in terms
of both employment and total wage bill (see Appendix Figure A.11).

37



7 Conclusion

Technological change reorganizes production at the task level, so understand-
ing its labor-market effects requires characterizing workers” comparative ad-
vantage across occupations and tasks. This paper develops and estimates a
dynamic task-based framework that recovers this comparative advantage and
embeds it in a general-equilibrium model of occupational choice and skill accu-
mulation. We use this framework to study artificial intelligence as a technology
that augments, automates, and simplifies tasks. The quantified model predicts
that generative Al substantially raises wages, especially in the lower part of the
wage distribution. A decomposition shows that simplification of tasks is the
key driver behind Al’s distributional effects.

This paper raises several important questions for future research. First, in
our framework, we take the technical change brought about by Al as exoge-
nous. One could, however, consider how simplifying technologies arise from
directed innovation when particular skills are in short supply (Acemoglu, 2002;
Acemoglu and Restrepo, 2018). Second, we treat workers’ skills at labor market
entry as exogenous. Itis useful, however, to consider how technical change may
affect people’s educational choices (Heckman et al., 1998). Last, this paper only
considers the effect of technical change on the labor market. However, technical
change can also have strong distributional implications through capital income
(Moll et al., 2022) and business income (Reichardt, 2025). For the latter, it is
particularly pressing to understand whether Al’s simplifying capabilities allow

specifically small firms to benefit from its use.
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FIGURE A.1: PRODUCTION AND SKILL ACCUMULATION: FUNCTIONAL
FORrRMS

(A) PRODUCTION (B) SKILL ACCUMULATION

f(hs,rzs) G (hs, 115, A)

hs

Notes: This figure illustrates the functional forms of the production and skill accumulation
functions in equations (14) and (16), respectively. Panel A shows the production function

f(hs, o) = hY exp (—17 min {hs — rT,s,0}2>. Panel B shows the learning part of the skill ac-

cumulation function: § (hs, rr,s, A) = max {rrs — hs, 0} exp (—Amax {rrs — hs,0}). It illustrates
that maximum learning is attained when the skills are 1 below the skill requirements.

44



A Figures

FIGURE A.2: VALIDATION OF TASK SKILL REQUIREMENT DATA WITH O*NET
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Notes: This figure shows the correlation between the occupation-level skill requirement in the
O*NET database and the GPT-40 generated task-level skill requirements aggregated to the
occupation-level for the skills used in the analysis. Each observation represents an occupa-
tion in the O*NET database.
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FIGURE A.3: VALIDATION OF TASK SKILL REQUIREMENT DATA WITH O*NET
(35 SKILL DIMENSIONS)
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Notes: This figure shows the correlations between the occupation-level skill requirement in
the O*NET database and the GPT-40 generated task-level skill requirements aggregated to the
occupation-level for each of the 35 skills.
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FIGURE A.4: AGREEMENT ON AI EXPOSURE WITH ELOUNDOU ET AL. (2024)

(A) AUGMENTATION (B) AUTOMATION
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Notes: This figure compares our estimates tasks’ exposure to augmentation and automation by
generative AL Panel A shows our task-level augmentation estimates (time saved to complete
each task in an occupation) to those provided by Eloundou et al. (2024), measuring whether or
not large language models can save at least 50 percent of time to complete a task (binary). Panel
B shows the the share of tasks in each occupation that can be automated by generative Al with
similar data provided by Eloundou et al. (2024).
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FIGURE A.5: SKILLS & GENERATIVE Al EXPOSURE BY CHANNEL
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Notes: This figure shows the correlation between a task’s skill requirements and its potential
to be augmented, automated, or simplified by Generative Al. Each dot represents the average
percentile of exposure to each channel among tasks with the same requirement in a given skill.
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FIGURE A.6: INITIAL SKILL DISTRIBUTION

Density
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Notes: This figure shows the estimated density of the skill distribution of young workers (age
a = 1in the model) on O*NET’s 1 to 7 scale. For comparison, for the skill “reading comprehen-
sion”, a 2 means being able to “read step-by-step instructions for completing a form”, 4 means
being able to “understand an email from management describing new personnel policies”, and
6 means being able to “read a scientific journal article describing surgical procedures”.

FIGURE A.7: MODEL FIT: COMPARING MODEL MOMENTS WITH DATA
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Notes: Panel A shows the correlation between the average wage in an occupation in the model’s
steady state and in the data as reported in the 2018 BLS OEWS data. Panel B reports the median
wage by age in the NLSY79 and the model’s steady state.
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FIGURE A.8: DISTRIBUTION OF WELFARE EFFECTS
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Notes: This figure shows the distribution of Al’s welfare effect on individual workers. The wel-
fare effect is measured in equivalent wage variation: it represents the permanent wage increase
across all occupations that yields the same welfare gain as the introduction of Al

FIGURE A.9: GENERATIVE AI’S EFFECT ACROSS OCCUPATIONS
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Notes: This figure shows the distribution of generative Al’s predicted effects across occupations
based on our structural model. Panel (A) shows wage bill changes (wages x employment).
Panel (B) shows wage changes. Panel (C) shows employment effects, which are symmetric
around zero by definition as our model does not feature unemployment.
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FIGURE A.10: AI’S EFFECT ON OCCUPATIONAL EMPLOYMENT & WAGES
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Notes: This figure shows the model’s predictions on Al's employment and wage effects by
occupational group. Occupations are sorted in descending order of Al's effect on their wage
bill, so that the first listed occupation experiences the largest wage bill increase.
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FIGURE A.11: AI’S EFFECT ON DETAILED OCCUPATIONS” WAGE BILLS
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Notes: This figure shows the model predictions on Al's wage bill effects by occupation.
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FIGURE A.12: AUTOMATION EXPOSURE MOST PREDICTIVE OF LABOR MARKET
LOSSES
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Notes: This figure shows the relationship between three dimensions of Al exposure and model-
predicted changes in occupational wage bills. Each bubble represents an occupation, with size
proportional to pre-Al employment. Panel (A) shows augmentation exposure, measured as the
share of time access to generative Al can save in completing an occupation’s tasks. Panel (B)
shows automation exposure, measured as the share of an occupation’s tasks than generative
Al can complete autonomously. Panel (C) shows simplification exposure, measured as the
(negative) relative change of skill levels required to complete an occupation’s tasks (averaged
across all 35 O*NET skills).

FIGURE A.13: SKILLS AND EDUCATION BY GENAI’S WAGE BILL EFFECT
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Notes: This figure shows the relationship between occupational characteristics and generative
Al's wage bill effects. Panel A plots average skill requirement deciles against wage bill effect
deciles. Panel B plots education levels against wage bill effect deciles. Each point represents a
decile of occupations ranked by their predicted wage bill change, weighted by pre-Al employ-
ment.
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FIGURE A.14: SKILLS AND EDUCATION BY WAGE BILL EFFECT: PHYSICAL Al
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Notes: This figure shows the relationship between occupational characteristics and Al's wage
bill effects when physical manipulation capabilities are available. Panel A plots average skill
requirement deciles against wage bill effect deciles. Panel B plots education levels against wage
bill effect deciles. Each point represents a decile of occupations ranked by their predicted wage
bill change, weighted by pre-Al employment.

FIGURE A.15: RADIOLOGISTS” TASK-BASED AUTOMATION EXPOSURE
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Notes: This figure shows radiologists” automation exposure across all tasks they engage in ac-
cording to O*NET. We classify a task as ‘automatable’ if it has high or full automation exposure,
which is restricted to cases where the LLM indicates that generative Al can complete at least
90% of the components of the tasks. We classify skill requirements as “high” if they exceed level
3.5 in O*NET’s scale from 1 to 7.
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FIGURE A.16: MANAGEMENT ANALYSTS” TASK-BASED AUTOMATION

EXPOSURE
100
—~ Analyze data gathered >
<@ and develop solutions
= _
= 80 @)
]
=
) @ Document findings of study
& and prepare recommendations Skill requirements
o) 60 Interview personnel . .
4 and conduct on-site @ High (several skills)
[9) observations  (O) . .
— O High (one skill)
=
2 407 O Low
]
1)
©
g
g 20
<
0
T T
No Yes
Automatable

Notes: This figure shows management analysts’ automation exposure across all tasks they en-
gage in according to O*NET. We classify a task as ‘automatable’ if it has high or full automation
exposure, which is restricted to cases where the LLM indicates that generative Al can complete
at least 90% of the components of the tasks. We classify skill requirements as “high” if they
exceed level 3.5 in O*NET’s scale from 1 to 7.

FIGURE A.17: EARLY LABOR MARKET EFFECTS OF GENERATIVE Al
(A) EMPLOYMENT (B) WAGES
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Notes: Event study estimates (B) show differential changes in occupational employment and
wages following ChatGPT’s November 2022 release. Coefficients represent the effect of the
model-predicted change in the outcome on the observed outcome. A coefficient of 1.0 would
indicate complete realization of model predictions. Estimates use CPS data aggregated to 6-
month periods with occupation fixed effects and time fixed effects. The specification with
controls includes occupation-specific trends based on education, sectoral composition, demo-
graphics, and pre-Al wages. Error bars represent 95%-confidence intervals.

55



B Tables

TABLE B.1: AGGREGATION OF O*NET’S SKILL REQUIREMENTS TO 5

DIMENSIONS

Skill O*NET skill O*NET skill category
Equipment Maintenance Technical
Equipment Selection Technical

Manual ] .
Installation Technical
Repairing Technical

Math Mathematics Basic Content
Active Listening Basic Content
Coordination Social
Instructing Social

Social Management of Personnel Resources Resource Management
Negotiation Social
Persuasion Social
Service Orientation Social
Social Perceptiveness Social
Complex Problem Solving Complex Problem Solving
Judgment and Decision Making Systems
Operation and Control Technical
Operations Analysis Technical
Operations Monitoring Technical

Technical Progr.amming . Techn%cal
Quality Control Analysis Technical
Science Content
Systems Analysis Systems
Systems Evaluation Systems
Technology Design Technical
Troubleshooting Technical
Reading Comprehension Basic Content

Verbal Speaking Basic Content
Writing Basic Content

Notes: This table shows the mapping of the five skill clusters—Manual, Math, Social, Verbal,
and Technical—to the relevant O*NET skills and their respective O*NET’s skill category. For
each of the skills, we set the requirement to the average across the relevant O*NET skills. We
dropped 7 out of 35 O*NET skill dimensions that could not be clearly mapped into the skills
used in the analysis.
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TABLE B.2: AGREEMENT ON AUTOMATION EXPOSURE WITH ELOUNDOU
ET AL. (2024)

Eloundou et al. (2024)

Our measure None Low Medium High Full

None 26.86 1.65 0.01 034 0.14
Low 6.12 21.34 1.98 218 0.12
Medium 017  7.27 7.61 3.65 0.06
High 004 1.77 5.61 11.53 0.18
Full 0.02 0.07 0.02 1.02 0.24

Notes: This table shows the agreement rates between our measure of automation and that of
Eloundou et al. (2024) on the task-level. The table is computed based on 14,209 tasks (out of
19,530) that are in both databases. We classify a task as automated if the exposure is “high”
or “full”. The share of automated tasks is 21% and 22% in Eloundou et al. (2024)’s and our
measure, respectively.

TABLE B.3: SUMMARY OF TASK-LEVEL DATA ON Al CAPABILITIES

Augmentation Automation  Simplification
Excluding Including
automatable tasks automatable tasks

Mean 17.9% 20.2% 22.2% 18.3%
Std. Dev. 9.4% 9.6% 41.6% 6.6%
Median 20.0% 20.0% 0.0% 20.4%
Range 0.0% - 70.0% 0.0% - 70.0% 0.0% - 100.0%  0.0% - 32.0%
Tasks 15,192 19,530 19,530 19,530

Notes: This table summarizes our new estimates of generative Al’s potential impact on tasks
across three channels: augmentation (share of worker’s time saved by technology to complete
task), automation (share of tasks that can be fully automated by technology), and simplification
(relative decrease in average skill requirements across all 35 O*NET skill dimensions). For
augmentation, we present estimates both excluding and including tasks that can be automated.
Augmentation and simplification estimates are generated by GPT-40; automation estimates are
generated by GPT-5 with low to medium reasoning effort.
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TABLE B.4: EXPERIMENTAL ESTIMATES COMPARED TO OUR TASK
AUGMENTATION DATA

Occupation Task Tool Estimate N  Notes Source

Theirs Ours

Software developer ~ Coding GitHub  26%  30% 4,867 +26.1% number of completed tasks in lab; new de- [1]
Copilot velopers higher adoption rates & higher produc-

tivity gains

Software developer ~ Coding GitHub  56%  27% 95  55.8% time saved, quality T [2]
Copilot
Software developer ~ Coding GitHub  36%  30% 23 36% time saved for familiar tasks; no change for [3]
Copilot unfamiliar tasks; 48% fewer issues
Programmer Coding GPT-3 27%  30% 100 27% time saved among 100 expert programmers; [4]
50 non-programmers perform tasks similarly well
with LLM
Programmer Coding GitHub 0% 28% 24 No time saved; however, most participants still [5]
Copilot preferred using LLM

Management con- Consulting GPT-4 25%  30% 758  25.1% time saved, +12.2% tasks completed, +40% [6]
sultant quality (decreased for tasks beyond Al frontier);

lower-skilled consultants benefited more

Customer support Resolution GPT-4 14%  30% 5,179 +14% productivity (issues resolved per hour), [7]
+34% for new & low-skill workers; minimal im-

pact on experienced & high-skill workers

- Writing GPT-35 40%  30% 453 40% time saved, +18% output quality; inequality [8]
between workers |; low-skill workers benefited

most; likelihood of using Al after experiment 1

Taxi driver Selecting AlNavi 14% 9% 520  Shorter cruising time; gains only among low-skill [9]
routes drivers
Lawyer Legal writing Vincent 20%  30% 127 19.9% time saved across different legal writing  [10]
& ol- tasks, quality 1, LLM “Vincent” slightly higher
preview gains
Product designer Product mar- GPT-40 13- 30% 776  +0.37 SD quality and 16.4% time saved for individ- ~ [11]
keting & de- 16% uals; +0.39 SD quality and 12.7% time saved for
velopment teams
Software developer ~ Coding GitHub  65%  27% 24  Developers implemented ~65% more require-  [12]
Copilot ments with Al assistance
Software developer ~ Coding Google  21%  30% 96 Al users finished an enterprise-grade task 21%  [13]
Al faster. Results stronger for senior developers.
Tools
Programmer Coding CodeFuse 55%  30% 1,219 Lines of code produced 1 55%, gains concentrated [14]
among junior staff
Knowledge workers ~ E-mail MS 365 11% 26% 7,137 Treated spent 12% less time on email each week; [15]
Copilot did not significantly change time spent in meet-
ings.
Train commission- Trouble- GPT-35 20%  20% 173 +1.14 SD quality score; 20% increase in tasks [16]
ing technician shooting +RAG completed not significant; less-experienced bene-
fit more.

Notes: Sources correspond to [1] Cui et al. (2024), [1] Cui et al. (2024), [2] Peng et al. (2024), [3] Clarke and Hanrahan
(2024), [4] Campero et al. (2022), [5] Vaithilingam et al. (2022), [6] Dell’Acqua et al. (2023), [7] Brynjolfsson et al. (2025),
[8] Noy and Zhang (2023), [9] Kanazawa et al. (2022), [10] Schwarcz et al. (2024), [11] Dell’Acqua et al. (2025), [12]
Weber et al. (2024), [13] Paradis et al. (2024), [14] Gambacorta et al. (2024), [15] Dillon et al. (2025). [16] Lowhagen et al.
(2025). To construct our own estimates of task augmentation (share of time saved to complete task) by generative Al at
the level of work activities, we aggregate our task-level estimates within the relevant occupation as equally weighted
averages for tasks we judge to be relevant to the work activity covered in each experiment.
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TABLE B.5: OVERVIEW OF MODEL PARAMETERS

Model object Symbol Value  How itis set
Elast. of substitution: Occupations ¢ 1.57 Burstein et al. (2019);
Caunedo et al. (2023).
Elast. of substitution: Tasks 0 0.49 Humlum (2019).
Number of occupations ] 93 3-digit BLS SOC occupa-
tions.
Number of periods A 40 Years between 25 and 65.
Discount factor B 0.78 Following  Keane  and
Wolpin (1997).
Skill dimensions S Addison et al. (2020); Baley
et al. (2022), plus manual.
Occupational task sets T O*NET tasks.
Occupational task weights 0 O*NET task importance.
Task-level skill requirements e Large language model.
Task-level Al augmentation Yt "
Task-level Al automation Aj "
Learning cost: 18* AFQT quartile A1) 21.20 Maximum likelihood.
Learning cost: 2"4 AFQT quartile A(2) 18.01 ”
Learning cost: 3" AFQT quartile A(3) 17.07 "
Learning cost: 4" AFQT quartile A(4) 16.06 "
Human capital depreciation o 0.0004 ”
Scale of productivity shocks ¢ 0.053 "
Occupational switching cost K 0.340 "
Skill distribution (Beta) (Bs, By)  (68,125) ”
Cost of underqualification n 1.66 OLS within MLE routine.
Skill productivity: Manual WMn 0.23 ”
Math WMt 0.57 ”
Social ws 0.40 ”
Technical wT 0.17 ”
Verbal wy 0.25 ”
Occupational amenities {u j}]]‘:1 Match employment shares a
la (Berry et al., 1995).
Occupational demand {txj}]]-zl Using estimated prices and

wage bills.

Notes: This table provides an overview of the parameters of the model, their mathematical
symbols, the value at which they are set, and the procedure with which we arrived at the value.
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TABLE B.6: OCCUPATIONAL SKILL REQUIREMENTS PREDICT OCCUPATIONAL
PRICES

Dependent variable: Log occupational price p;

Skill requirements

Manual 0.228 0.230 0.226 0.227
(0.207) (0.214) (0.201) (0.208)
Math -0.070 -0.073 -0.077 -0.080
(0.277) (0.286) (0.269) (0.278)
Social -0.083 -0.078 -0.077 -0.073
(0.352) (0.363) (0.341) (0.353)
Technical 1.342** 1.341%* 1.353** 1.352**
(0.599) (0.619) (0.581) (0.601)
Verbal 0.554 0.554 0.550 0.550
(0.376) (0.388) (0.364) (0.377)
Sample occupations All 50+ All 50+
Empirical Bayes applied No No Yes Yes
Observations 93 87 93 87
R? 0.73 0.73 0.74 0.74

Notes: This table shows the coefficients and R? of a regression of the estimated occupational
prices (in logs) on occupational skill requirements. Each observation represents one occupa-
tion and is weighted by the number of worker-year observations in that occupation. Columns
where sample occupations indicates “50+” only include occupations with at least 50 observa-
tions. The third and fourth column show the results with fixed effects on which empirical Bayes
regression has been applied. Occupational prices are estimated as the occupational fixed effects
in regression equation (17). Occupational skill requirements refer to Zre’f,- O res *p <0.10,**

p < 0.05,** p < 0.01.
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TABLE B.7: MODEL FIT: WAGE INEQUALITY IN DATA AND MODEL

Ratios Top shares

.. p90 p90 p75 0 o 0
Glnl m m m 10 /0 5 /O 1 /O

Data 0.32 4.01 213 204 026 0.16 0.05
Model 0.24 296 1.83 1.84 020 0.11 0.02

Notes: This table reports measure of inequality in the unconditional wage distribution in the
data (NLSY79) and in the model'’s steady state. The unit of observation is a worker-age pair in
the data and in the model. We only included workers who remain in the NLSY79 and work
until 2020 without interruptions over 18 months. Sample weights are applied in the NLSY79
data.

TABLE B.8: SKILL CHANNELS AND LABOR MARKET OUTCOMES

Wage Employment
growth (%) growth (%)
(1) ) ®) 4)
Augmentation 1.48 -2.89 2.11 6.79**
(4.79) (4.18) (3.18) (2.91)
Automation 4.74%  19.04*  -23.86"* -39.03***
(1.80) (3.94) (1.39) (3.67)
Simplification -24.68***  -15.19**  24.81***  15.25%**

425)  (338)  (293)  (2.94)

Indirect simplification

Augmentation-led 3.52* -2.50**
(1.78) (1.24)
Automation-led -15.88*** 17.05%**
(4.34) (4.22)
Observations 93 93 93 93

Notes: This table presents weighted OLS regressions of occupation-level wage and employment growth on Al exposure
measures and skill requirement changes. The dependent variable is wage growth in columns (1)-(2) and employment
growth in columns (3)-(4). All independent variables are standardized to have standard deviation 1. Columns (1)
and (3) include only direct AI exposure measures (augmentation, automation, simplification). Columns (2) and (4)
add indirect skill requirement changes induced by Al All regressions are weighted by pre-Al occupation employment
shares. Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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C Estimation

C.1 Costsavings and AlI’s income share

The cost of performing a task T with the worker’s unit of time equals

I _ Aj(h)
(h) = )

where A;(h) is the shadow value of a unit of time in occupation j given skills

h. Thus, for any automated task T € .A;, the cost of producing the task with
capital relative to performing the task by labor equals

Cr . Y f(h,re)
cr(h) i Ai(h) .

Since the shadow value of a unit of time is the wage w]-(h), equation (4)

implies that cost savings are equal to

1-p\ o1 I
w=o(1- o (%) ERREp—

Leew; 078 flhre)e1)

For our quantification, we need an estimate of } .« A 0« (%) ’ for each occu-
pation. To obtain this, we make two simplifying assumptions. First, we assume
that the cost savings do not vary across automatable tasks, i.e., xr = x for
all T € A]- and Vj = 1,...,]. Second, we assume that the automated tasks are
not different in skill requirements from the average remaining non-automatable
tasks, i.e., ’yg_lf (hro) & Yren, Oj,T’y’T)_lf(h, o) tforall T € Ajand Vj =
1,...,]J. Under those two assumptions, the cost savings simplify

1-p =
x=1- Z%(%)

Clearly, the solution is that ¢ /p is equal across tasks. From there, equation (21)
follows. This equation is useful because it shows that the income share that ac-
crues to automation capital in each occupation j is a function of the (weighted)

share of tasks that are automatable and the cost savings by automated task.
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C.2 Log-linearization of the production function

In this paragraph, we derive the log-linear wage regression equation in (17).
Starting from the wage equation (15), and imposing A; = @ (so that I'; = 1 and
/\/']- =T forallj=1,...,], we obtain

logw;(h) =log pj + Y wslog(hs)

seS

1 — . p—1
+ o1 log ( Z Gjlrfyf— ! exp <—17 min {h; — rT,S,0}2> ) .

T€7;

Now define the variable m; = Y .smin{hs — r;5,0}? and log-linearize the
wage function around m; = 0 for all T € 7;. That is, we linearize the wage

function around the perfectly matched worker.

A first-order Taylor expansion around this point yields

log ( Y 00 exp((1—p)y mr))

TE'E

27_ 9],T')’T me
-1 TE/;
~ log ( Z Qj,T’)/g ) + 77(1 - ,0) ] !

T€T;

=(1-p) (77 Z Qj,"(')’glmr)

TeT;

where the second equality follows from ZreTj Qj,Tfy’T’_l = 1. Combining the

equations above with the definition of m yields equation (17).

D Data

D.1 Task-level Skill Requirements

We elicit a task’s skill requirements by replicating O*NET’s occupation-level
questionnaire on the task-level using OpenAl’s GPT-40. We requested the skill
requirement for each of the 19,530 tasks for each of the 35 skill dimensions,
resulting in 683,550 independent prompts. As in O*NET, the skill requirements
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are rated from 1 to 7 and each of the 35 skills have different “level anchors”
to indicate the meaning of levels 2, 4, and 6. These anchors, as well as the set
of tasks in each occupation, and their descriptions, are taken from the O*NET
database. Below, we present the full text of the prompt for the skill Reading
comprehension, the occupation Chief Executives, and the task “Prepare budgets for
approval, including those for funding or implementation of programs.”

The occupation [Chief Executives] contains the task: [Prepare budgets for
approval, including those for funding or implementation of programs].

What level of skill in [reading comprehension] is needed to perform the task

in this occupation well?

Provide the answers on a scale from 1 to 7, where 2 means [Read step-by-
step instructions for completing a form], 4 means [Understand an email
from management describing new personnel policies], and 6 means [Read

a scientific journal article describing surgical procedures].

Output only a single integer, valued between 1 and 7. Do not output any-
thing else.

D.2 Al and Task Augmentation, Automation, Simplification

We model technologies” impact on workers through three distinct channels:
augmentation, automation, and simplification. We leverage O*NET’s assess-
ment framework and descriptions of occupations, tasks, and skills to generate
new data using OpenAl’s large language models. In our baseline scenario, we
only consider Generative Al. However, we also consider automation by Au-
tonomous Vehicles, and Smart Robots. For automation assessments, we use
GPT-5; for augmentation and simplification channels, we use GPT-40 (com-
pleted before GPT-5’s release).

D.2.1 Augmentation of Tasks

For augmentation assessment, we ask GPT-4o to estimate time savings when
workers get access to these technologies. We assess all 19,530 O*NET tasks and
the technologies “generative AI,” “smart robots,” and “autonomous vehicles,”
resulting in 58,590 prompts that are evaluated independently. We use OpenAl’s
GPT-40 with temperature between 0.05 and 0.1.
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The prompt structure is consistent across technologies, varying only in the
technology description. Here we show the full prompt for Generative Al:

We are conducting a rigorous assessment of the time a worker can save on
specific tasks by using Generative Al

1. Description of technology: Generative Al

Generative Al refers to Al techniques that learn a representation of artifacts

from data, and use it to generate brand-new, unique artifacts that resem-
ble but don’t repeat the original data. These artifacts can serve benign or
nefarious purposes. Generative Al can produce totally novel content (in-
cluding text, images, video, audio, structures), computer code, synthetic
data, workflows and models of physical objects. Generative Al also can be
used in art, drug discovery or material design.

2. Description of the worker and the task:
Worker’s role: [Occupation] with an average level of expertise.

Worker’s access to tools: Has all the standard tools available to someone in
this position. In addition, this worker now gains access to a Generative Al

Worker’s task: [Occupational task]
3. Question:

Estimate the percentage of time that the worker can save by using the de-
scribed Generative Al to assist with the task.

4. Output Format:

Provide your answer as a percentage (numeric value between 0 and 100).
Do not output an explanation or any additional information. The answer
should be a single number representing the estimate.

For Smart Robots, the technology description changes to:

A smart robot is an Al-powered, often-mobile machine designed to au-
tonomously execute one or more physical tasks. These tasks may rely on,
or generate, machine learning, which can be incorporated into future activ-
ities or support unprecedented conditions. Smart robots can be split into
different types based on the tasks/use cases, such as personal, logistics and

industrial.
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For , the description is:

D.2.2 Automation of Tasks

To measure technologies’ potential to automate occupational tasks, we follow
Eloundou et al. (2024) in using a five-tier rubric ranging from no automation
(TO) to full automation (T4) exposure. We assess all 19,530 O*NET tasks and
the technologies “generative Al”, “smart robots”, and “autonomous vehicles”,
resulting in 58,590 prompts that are evaluated independently. We use OpenAl’s
GPT-5 with low to medium reasoning effort and temperature between 0.05 and
0.1.

The automation prompt follows Eloundou et al. (2024)’s format, with technology-

specific definitions and examples. The prompt for Generative Al is:

T Automation Rubric

1. Determine if the occupation/task pair meets the definition of TO No-
Automation Exposure. If it does, label it as TO and stop.

2. If the occupation/task pair does not meet the definition of TO No-Automation
Exposure, determine if the occupation/task pair meets one of the other defi-
nitions and select the label that applies:

o T4: Full automation exposure

» T3: High automation exposure

e T2: Moderate automation exposure

® T1: Low automation exposure

Rubric

Generative Al refers to Al techniques that learn a representation of artifacts
from data, and use it to generate brand-new, unique artifacts that resem-

ble but don’t repeat the original data. These artifacts can serve benign or
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nefarious purposes. Generative Al can produce totally novel content (in-
cluding text, images, video, audio, structures), computer code, synthetic
data, workflows and models of physical objects. Generative Al also can be

used in art, drug discovery or material design.

Assume you are a worker with an average level of expertise in your role
trying to complete the given task. You have access to Generative Al as well
as any other existing software or computer hardware tools mentioned in
the task. You also have access to any commonly available technical tools
accessible via a laptop (e.g. a microphone, speakers, etc.). You do not have
access to any other physical tools or materials.

Please label the given task according to the rubric below.

T0 No-Automation Exposure A class of tasks for which Generative Al
cannot conceivably perform any aspect of the task in any manner.

T4 Full Automation Exposure A class of tasks where, in most contexts in
which this task is currently performed by a human, Generative Al can com-
plete all aspects of this task with high quality when prompted by a human.
The output does not normally require oversight by a human. Oversight
is not normally required for tasks labeled T4 because the consequences for
failure or inaccuracy are small for this task, human judgment is not neces-
sary to complete this task, and generative models can consistently perform
this task with very high quality.

T3 High Automation Exposure A class of tasks where, in most contexts
in which this task is currently performed by a human, Generative Al could
complete 90-100% of the components of the task when prompted, but the
output requires oversight from a human. QOversight is normally required
because the consequences for failure or inaccuracy are significant for this
task, human judgment is necessary to complete this task, and/or genera-
tive models cannot perform all aspects of this task with high quality con-
sistently. These tasks rely almost exclusively on the processing of digital
information, but human judgment is needed to ensure that any digital out-
puts from Generative Al are high enough quality to be acceptable for the
particular context.

T2 Moderate Automation Exposure A class of tasks where, in most con-
texts in which this task is performed by a human, Generative Al could
complete between 50%-90% of the components of the task at high quality.
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These tasks normally rely heavily on the processing of digital information,
but a significant portion of the task also involves actions that Generative
Al cannot perform with high quality. These tasks require at least some
human action beyond just double-checking generative model outputs (such
as interpretation, judgment, human-to-human communication, or physical
actions).

T1 Low Automation Exposure A class of tasks where, in most contexts
in which this task is performed by a human, Generative Al could complete
between 0%-50% of the components of the task at high quality. These tasks
normally rely only partially on the processing of digital information, while
the majority of the task involves actions that Generative Al cannot per-
form with high quality. A majority of the actions that need to be taken to
complete this task require a human to perform the action.

Definitions

High quality means someone receiving or reviewing the output would not
be able to tell the difference between whether it came from Generative Al or
a human. For tasks that require a lot of interaction during the completion
of the task (e.g. meetings, negotiations), high quality means the people you
were interacting with either would not know or would not care that they
were interacting with Generative Al

Digital information or information that can easily be expressed dig-
itally includes but is not limited to text, audio, images, video, PDFs, books,
code, and data.

Annotation Examples
Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’” educational, physical, or social development.

Automation score (TO/T'1/T2/T3/T4): T1
Explanation: GenAl drafts SMART goals, accommodations, progress-mo-

nitoring templates, and meeting summaries well. But “develop” in practice
includes assessments, legal compliance under IDEA, multi-party negotia-
tion, and parent/team consensus—nhigh-stakes, non-digital work that goes
far beyond checking model output. The human does a majority of the task
through judgment and human-to-human interaction — <50% automat-
able at high quality.
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Occupation: Construction and Building Inspectors

Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (TO/T1/T2/T3/T4): T1

Explanation: T1 is right because authority, on-site judgment, and safety
liability are inherently human/embodied. Modern Al (CV on photos/video,
drone logs, code lookups) can pre-screen and draft reports, but the core task
is physical inspection plus enforcement. The given explanation is dated—

codes are digital; the real blockers are embodiment, accountability, and legal
sign-off.

Occupation: Food and Tobacco Roasting, Baking, and Drying Machine
Operators and Tenders

Task: Dump sugar dust from collectors into melting tanks and add water

to reclaim sugar lost during processing.
Automation score (TO/T1/T2/T3/T4): TO

Explanation: The task as phrased is purely physical and you’ve restricted
tools to what’s on a laptop. GenAl can’t perform any part of this task (not
“write SOPs” but do the dumping). If the task were broadened to “optimize
reclaim procedure / generate checklists,” exposure would rise, but for the

literal action it’s TO.
Occupation: Interpreters and Translators

Task: Refer to reference materials (dictionaries, lexicons, encyclopedias,
computerized terminology banks) as needed to ensure translation accuracy.

Automation score (TO/T1/T2/T3/T4): T4

Explanation: GenAl can autonomously retrieve, disambiguate, and com-
pile authoritative references and recommended terms with citations and
confidence scores across most high-resource language pairs. The subtask is
fully digital, consistent, and does not normally require human oversight.

Occupation: Electronics Engineer

Task: Prepare documentation containing information such as confidential
descriptions or specifications of proprietary hardware or software, product
development or introduction schedules, product costs, or information about
product performance weaknesses.
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Automation score (TO/T1/T2/T3/T4): T3

Explanation: Given structured inputs (requirements, BOMs, test data),
GenAl can generate nearly all documentation variants (design specs, DFMEA
summaries, release notes, red-team risk write-ups), maintain traceability
tables, and enforce style guides. Consequences and confidentiality mean
human review is required, but the model can complete 90-100% of com-
ponents in digital form.

Occupation: Advanced Practice Psychiatric Nurse

Task: Write prescriptions for psychotropic medications as allowed by state
requlations and collaborative practice agreements.

Automation score (TO/T1/T2/T3/T4): T3

Explanation: If the medication choice is already clinically decided, GenAl
can populate eRx fields, check interactions/contraindications, map to for-
mularies, and draft prior-auth notes—essentially all digital components.
High-stakes legality and safety mandate human sign-off, but execution
is 90-100% automatable with oversight. (If the task were “evaluate and
decide what to prescribe,” exposure would drop; the annotation’s verb is

“write.”)

Now, apply the above rubric to the example below:
Occupation: [Occupation]

Task: [Occupational task]

Automation score (TO/T1/T2/T3/T4):

Explanation:

Below, we highlight the substantive changes for prompts related to Smart
Robots (other than pure wording changes that replace “generative AI” with
“smart robots”):

T Automation Rubric

[...]
Rubric

A smart robot is an Al-powered, often-mobile machine designed to au-

tonomously execute one or more physical tasks. These tasks may rely on,
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or generate, machine learning, which can be incorporated into future activ-
ities or support unprecedented conditions. Smart robots can be split into
different types based on the tasks/use cases, such as personal, logistics and
industrial.

[...]

Definitions

[...]

Annotation Examples

Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’ educational, physical, or social development.

Automation score (TO/T1/T2/T3/T4): T1

Explanation: A robot can assist with data capture (sensor-based observa-
tions), simple assessments, and pre-filling forms, but developing IEPs re-
quires pedagogical judgment, legal compliance, and multi-party collaboration—
most of which remains human.

Occupation: Construction and Building Inspectors

Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (TO/T1/T2/T3/T4): T3

Explanation: Robots (drones/UGVs) with CV/LiDAR can navigate, cap-
ture, measure, compare against BIM/specs, and draft reports ( 90-100% of
components). Human oversight is needed for code interpretation, contrac-

tor communication, and legal sign-off.

Occupation: Food and Tobacco Roasting, Baking, and Drying Machine
Operators and Tenders

Task: Dump sugar dust from collectors into melting tanks and add water
to reclaim sugar lost during processing.

Automation score (TO/T1/T2/T3/T4): T4

Explanation: Repetitive material handling and dosing in a controlled plant
are fully automatable with robotic manipulation, sensing, and safety inter-

locks.
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Occupation: Interpreters and Translators

Task: Refer to reference materials (dictionaries, lexicons, encyclopedias,
computerized terminology banks) as needed to ensure translation accuracy.

Automation score (TO/T1/T2/T3/T4): T4
Explanation: Purely digital retrieval/matching. A robot running GenAl

can autonomously consult termbases, disambiguate senses, enforce glos-
saries, and return citations without routine human oversight.

Occupation: Electronics Engineer

Task: Prepare documentation containing information such as confidential
descriptions or specifications of proprietary hardware or software, product
development or introduction schedules, product costs, or information about
product performance weaknesses.

Automation score (TO/T1/T2/T3/T4): T3

Explanation: With structured inputs (requirements, BOMs, test data), a
robot+GenAl stack can draft nearly all documents and maintain traceabil-

ity. Human review remains for accuracy, confidentiality, and compliance.
Occupation: Advanced Practice Psychiatric Nurse

Task: Write prescriptions for psychotropic medications as allowed by state
requlations and collaborative practice agreements.

Automation score (TO/T1/T2/T3/T4): T3
Explanation: A robot can complete the eRx workflow (populate fields, check

interactions, format to payer formularies, draft prior auth), but human au-

thorization/clinical judgment is required; oversight is routine.
Occupation: Warehouse Workers

Task: Move inventory from receiving dock to storage locations using hand
trucks or pallet jacks.

Automation score (T0/T1/T2/T3/T4): T4
Explanation: AMRs/AGVs integrated with WMS can autonomously trans-

port pallets/totes end-to-end in structured warehouses.
Occupation: Assembly Line Workers

Task: Attach components to products moving along assembly line accord-
ing to specifications.
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Automation score (TO/T1/T2/T3/T4): T4

Explanation: In the typical modern assembly context, robots can complete
all attachment steps with consistently high quality. Errors are caught by
automated fail-safes/poka-yoke and do not require routine human oversight;
technicians intervene only on rare exceptions or maintenance, which is out-
side the task scope.

Now, apply the above rubric to the example below:

]

Below, we highlight the substantive changes for prompts related to Autonomous
Vehicles (other than pure wording changes that replace “generative AI” with
“autonomous vehicles”):

T Automation Rubric
[...]
Rubric

An autonomous vehicle is one that can drive itself from a starting point to
a predetermined destination in “autopilot” mode using various in-vehicle
technologies and sensors, including adaptive cruise control, active steering
(steer by wire), anti-lock braking systems (brake by wire), GPS navigation

technology, lasers and radar.

[...]

Definitions

[...]

Annotation Examples

Occupation: Special Education Teachers, Preschool

Task: Develop individual educational plans (IEPs) designed to promote stu-
dents’ educational, physical, or social development.

Automation score (TO/T1/T2/T3/T4): T0

Explanation: Purely cognitive/interpersonal; no driving component for an
AV to perform.

Occupation: Construction and Building Inspectors
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Task: Inspect and monitor construction sites to ensure adherence to safety
standards, building codes, or specifications.

Automation score (T0/T1/T2/T3/T4): 11

Explanation: An AV can transport the inspector to/around sites, but the
inspection, judgments, and sign-off remain human; AV contributes a mi-
nority transport component.

Occupation: Veterinarians

Task: Drive mobile clinic vans to farms so that health problems can be
treated or prevented.

Automation score (TO/T1/T2/T3/T4): T2

Explanation: AVs can perform most road driving to rural sites, but last-
meters access (gates, unmarked farm roads, ad-hoc parking/turnarounds)
and dynamic on-site constraints often require human intervention. Over-
all, the AV covers a large portion of the task, but not reliably >90% across

most contexts.
Occupation: Correctional Officers and Jailers

Task: Drive passenger vehicles and trucks used to transport inmates to
other institutions, courtrooms, hospitals, and work sites.

Automation score (TO/T1/T2/T3/T4): T3

Explanation: On-road transport between facilities is highly automatable;
AVs can execute routing and vehicle control end-to-end. However, the
context is high-stakes (security protocols, perimeter handoffs, incident re-
sponse), so human oversight remains standard even if the driving compo-
nent is largely automated.

Occupation: Taxi Drivers and Chauffeurs

Task: Test vehicle equipment, such as lights, brakes, horns, or windshield
wipers, to ensure proper operation.

Automation score (TO/T1/T2/T3/T4): T4

Explanation: AV platforms can autonomously run pre-trip self-checks and
diagnostics (actuate systems, read sensors/OBD, verify via cameras), pro-

ducing pass/fail results without routine human oversight in most contexts.
Now, apply the above rubric to the example below:

[.]
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D.2.3 Simplification of Tasks

The simplification channel assesses how technologies change the skill require-
ments for performing tasks. We ask GPT-4o to evaluate skill levels both with-
out and with technology access, allowing us to measure the change in required
skills. The prompt asks for both values simultaneously. For example, with

Generative Al

The occupation [Occupation] contains the task: [Occupational task].
Technology name: Generative Al

Technology description: Generative Al refers to Al techniques that learn
a representation of artifacts from data, and use it to generate brand-new,
unique artifacts that resemble but don't repeat the original data. These ar-
tifacts can serve benign or nefarious purposes. Generative Al can produce
totally novel content (including text, images, video, audio, structures),
computer code, synthetic data, workflows and models of physical objects.
Generative Al also can be used in art, drug discovery or material design.

What level of skill in [Skill] is needed to perform the task in this occupation
well WITHOUT access to Generative AI? What level of skill in [Skill] is
needed to perform the task in this occupation well WITH access to Genera-
tive AI?

Provide the answers on a scale from 1 to 7, where 2 means [Skill Level
2 Anchor], 4 means [Skill Level 4 Anchor], and 6 means [Skill Level 6
Anchor].

Output only two integers separated by a comma, valued between 1 and
7. The first integer is the skill level WITHOUT access to Generative Al,
the second integer is the skill level WITH access to Generative Al Do not
output anything else.

All 35 O*NET skills and 19,530 O*NET tasks are evaluated independently.
Skill level anchors and task descriptions are drawn from O*NET as discussed
in Appendix D.1.

This approach allows us to measure both the baseline skill requirements r;
and the technology-adjusted requirements 7/ in a single API call for each skill
and task, improving consistency and reducing potential discrepancies from
separate queries. The difference between these two values captures the sim-
plification effect of the technology on task skill requirements.
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